Last active
May 6, 2020 01:37
-
-
Save mikekaminsky/e611cfa94edfb7a909e42866b67c8daa to your computer and use it in GitHub Desktop.
Simulation script for https://kaminsky.rocks/2020/05/the-magical-power-of-random-sampling/
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(dplyr) | |
library(progress) | |
library(foreach) | |
library(doParallel) | |
library(tidyr) | |
library(magrittr) | |
########################## | |
# Blog Post Example | |
########################## | |
p_x <- 0.2 | |
R <- -0.1 | |
total_pop <- 1000000 | |
P_J_XJ1 <- p_x + p_x * (1 - p_x) * R | |
P_J_XJ0 <- p_x - p_x * (1 - p_x) * R | |
delta <- (P_J_XJ1 - P_J_XJ0) | |
total_pop <- 1000000 | |
true_choice <- sample(c("Hawaiian", "Other"), | |
size = total_pop, | |
prob = c(p_x, 1 - p_x), | |
replace = TRUE | |
) | |
true_prop <- true_choice %>% | |
table() %>% | |
as.list() %>% | |
lapply(., function(x) x / length(true_choice)) | |
n_sims <- 200 | |
R <- -0.1 | |
sample_sizes <- c(50, 100, 1000, 10000, 100000, 500000) | |
jj <- 1 | |
samp_strats <- c("srs", "biased") | |
cores <- detectCores() | |
cl <- makeCluster(pmin(cores[1] - 1, length(samp_strats)), outfile = "") | |
registerDoParallel(cl) | |
res_strats <- foreach(style = iter(samp_strats), .combine = plyr::rbind.fill) %dopar% { | |
pb <- progress::progress_bar$new( | |
format = "[:bar] :current/:total (:percent)", | |
total = n_sims * length(sample_sizes) | |
) | |
pb$tick(0) | |
library(magrittr) | |
library(dplyr) | |
res_l <- vector(mode = "list", length = n_sims * length(sample_sizes)) | |
for (sample_size in sample_sizes) { | |
resp_p <- sample_size / total_pop | |
res_p_t <- resp_p - (1 - p_x) * resp_p * R | |
res_p_c <- resp_p + (1-(1 - p_x)) * resp_p * R | |
for (i in seq(n_sims)) { | |
if (style == "srs") { | |
sample <- sample(true_choice, size = sample_size, replace = FALSE) | |
} else { | |
c_t <- rep(0, total_pop) | |
# Who responds among people who like Hawaiian? | |
c_t[true_choice == "Hawaiian"] <- sample(c(1, 0), | |
length(c_t[true_choice == "Hawaiian"]), | |
prob = c(res_p_t, 1 - res_p_t), | |
replace = TRUE | |
) | |
# Who responds among people who like other? | |
c_t[true_choice == "Other"] <- sample(c(1, 0), | |
length(c_t[true_choice == "Other"]), | |
prob = c(res_p_c, 1 - res_p_c), | |
replace = TRUE | |
) | |
sample <- true_choice[c_t == 1] | |
} | |
df <- sample %>% | |
table() %>% | |
as.list() %>% | |
lapply(., function(x) x / length(sample)) %>% | |
data.frame() %>% | |
dplyr::mutate( | |
n = sample_size, | |
type = style | |
) | |
res_l[[jj]] <- df | |
jj <- jj + 1 | |
pb$tick() | |
} | |
} | |
plyr::rbind.fill(res_l) %>% | |
mutate( | |
error = Hawaiian - true_prop$Hawaiian, | |
error_pct = error / true_prop$Hawaiian | |
) | |
} | |
# Compile statistics table | |
res_strats %>% | |
group_by(n, type) %>% | |
summarize( | |
rmse = sqrt(mean(error**2)), | |
mape = mean(abs(error_pct)) | |
) %>% | |
pivot_wider(id_cols = "n", names_from = "type", values_from = c("rmse", "mape")) | |
stopCluster(cl) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment