Created
January 18, 2023 19:38
-
-
Save mikelove/9b61f73a78109cad58da78f2ebe3d842 to your computer and use it in GitHub Desktop.
Thinking about statistical models, estimation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int<lower=0> n; | |
int y[n]; | |
vector[n] x; | |
} | |
parameters { | |
real<lower=0> mu; | |
real<lower=0> delta; | |
} | |
transformed parameters { | |
vector[n] lambda = mu + delta * x; | |
} | |
model { | |
y ~ poisson(lambda); | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Jan 18 2023 | |
# Michael Love | |
# premise: suppose we have some counts (of something) | |
# before and after treatment, and we want to estimate | |
# delta, the effect of treatment | |
n <- 20 # sample size | |
delta <- 3 # true effect | |
mu <- 5 # baseline counts | |
makeData <- function(n, mu, delta) { | |
y0 <- rpois(n, mu) | |
y1 <- rpois(n, mu + delta) | |
data.frame(y=c(y0,y1), group=rep(c("t0","t1"),each=n)) | |
} | |
set.seed(1) | |
dat <- makeData(n, mu, delta) | |
model <- function(par, dat) { | |
mu <- par[1] | |
delta <- par[2] | |
# lambda = parameter of a probability distribution | |
lambda <- rep(c(mu, mu+delta), each=n) | |
sum(dpois(dat$y, lambda, log=TRUE)) # the log likelihood | |
} | |
model(c(4.9, 3.1), dat) | |
model(c(5.1, 2.9), dat) | |
# general purpose optimization (maximize the likelihood) | |
res <- optim(c(10,10), model, control=list(fnscale=-1), dat=dat) | |
res | |
mle <- data.frame(mu=res$par[1], delta=res$par[2]) | |
mle$ll <- model(res$par, dat) | |
library(dplyr) | |
library(tidyr) | |
library(purrr) | |
library(ggplot2) | |
grid <- expand_grid(mu=seq(4,6,length.out=100), | |
delta=seq(2,4,length.out=100)) | |
grid %>% | |
mutate(ll = map2_dbl(mu, delta, \(x, y) model(c(x, y), dat))) %>% | |
ggplot(aes(mu, delta, z=ll)) + | |
geom_contour() + | |
geom_point(data=mle, shape=4, size=2) | |
# bayes fitting | |
library(rstan) | |
x <- ifelse(dat$group == "t1", 1, 0) | |
fit <- stan("model.stan", data=list(n=2*n, y=dat$y, x=x), pars=c("mu","delta")) | |
stan_plot(fit) | |
stan_scat(fit, pars=c("mu","delta")) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment