Skip to content

Instantly share code, notes, and snippets.

@mikkokotila
Last active January 11, 2019 11:22
Show Gist options
  • Save mikkokotila/42c1429894ec69966fd374ab317cc6cb to your computer and use it in GitHub Desktop.
Save mikkokotila/42c1429894ec69966fd374ab317cc6cb to your computer and use it in GitHub Desktop.
import talos as ta
from keras.models import Sequential
from keras.layers import Dense
def minimal():
x, y = ta.datasets.iris()
p = {'activation':['relu', 'elu'],
'optimizer': ['Nadam', 'Adam'],
'losses': ['logcosh'],
'hidden_layers':[0, 1, 2],
'batch_size': [20,30,40],
'epochs': [10,20]}
def iris_model(x_train, y_train, x_val, y_val, params):
model = Sequential()
model.add(Dense(32, input_dim=4, activation=params['activation']))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer=params['optimizer'], loss=params['losses'])
out = model.fit(x_train, y_train, verbose=0,
batch_size=params['batch_size'],
epochs=params['epochs'],
validation_data=[x_val, y_val])
return out, model
scan_object = ta.Scan(x, y, model=iris_model, params=p, grid_downsample=0.1)
return scan_object
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment