I hereby claim:
- I am mikkokotila on github.
- I am mikkokotila (https://keybase.io/mikkokotila) on keybase.
- I have a public key whose fingerprint is 1415 6666 3A1C B257 ECA2 A86F 4308 1E9D C041 D0F8
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
org 0x100 ; .com files always start 256 bytes into the segment | |
; int 21h is going to want... | |
mov dx, msg ; the address of or message in dx | |
mov ah, 9 ; ah=9 - "print string" sub-function | |
int 0x21 ; call dos services | |
mov dl, 0x0d ; put CR into dl | |
mov ah, 2 ; ah=2 - "print character" sub-function |
# first we have to make sure to input data and params into the function | |
def breast_cancer_model(x_train, y_train, x_val, y_val, params): | |
# next we can build the model exactly like we would normally do it | |
model = Sequential() | |
model.add(Dense(10, input_dim=x_train.shape[1], | |
activation=params['activation'], | |
kernel_initializer='normal')) | |
model.add(Dropout(params['dropout'])) |
# then we can go ahead and set the parameter space | |
p = {'lr': (0.5, 5, 10), | |
'first_neuron':[4, 8, 16, 32, 64], | |
'hidden_layers':[0, 1, 2], | |
'batch_size': (2, 30, 10), | |
'epochs': [150], | |
'dropout': (0, 0.5, 5), | |
'weight_regulizer':[None], | |
'emb_output_dims': [None], | |
'shape':['brick','long_funnel'], |
# and run the experiment | |
t = ta.Scan(x=x, | |
y=y, | |
model=breast_cancer_model, | |
grid_downsample=0.01, | |
params=p, | |
dataset_name='breast_cancer', | |
experiment_no='1') |
p = {'lr': (0.8, 1.2, 3), | |
'first_neuron':[4, 8, 16, 32, 64], | |
'hidden_layers':[0, 1, 2], | |
'batch_size': (1, 5, 5), | |
'epochs': [50, 100, 150], | |
'dropout': (0, 0.2, 3), | |
'weight_regulizer':[None], | |
'emb_output_dims': [None], | |
'shape':['brick','long_funnel'], | |
'kernel_initializer': ['uniform','normal'], |
def iris_model(x_train, y_train, x_val, y_val): | |
model = Sequential() | |
model.add(Dense(32, input_dim=8, activation='adam')) | |
model.add(Dense(1, activation='sigmoid')) | |
model.compile(optimizer='relu', loss='binary_crossentropy') | |
out = model.fit(x_train, y_train, | |
batch_size=24, | |
epochs=100, |
import talos | |
from keras.models import Sequential | |
from keras.layers import Dense | |
def minimal(): | |
x, y = talos.templates.datasets.iris() | |
p = {'activation':['relu', 'elu'], | |
'optimizer': ['Nadam', 'Adam'], |
import talos as ta | |
from keras.models import Sequential | |
from keras.layers import Dense | |
def minimal(): | |
x, y = ta.datasets.iris() | |
p = {'activation':['relu', 'elu'], | |
'optimizer': ['Nadam', 'Adam'], |
import signs as signs | |
import pandas as pd | |
# load some text | |
df = pd.read_csv('tweets.csv').text | |
# load vectors | |
e = signs.Embeds("glove.twitter.27B.25d.txt") | |
# get Keras embeddings layer |