-
-
Save mil-ad/e8a82e8f6d4c096d1c873640f5ddae22 to your computer and use it in GitHub Desktop.
Getting a high accuracy on CIFAR-10 is not straightforward. This self-contained script gets to 94% accuracy with a minimal setup.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
from tqdm import tqdm | |
import torch | |
import torch.nn.functional as F | |
from torchvision import models, datasets, transforms | |
def get_CIFAR10(root="./"): | |
input_size = 32 | |
num_classes = 10 | |
train_transform = transforms.Compose( | |
[ | |
transforms.RandomCrop(32, padding=4), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
] | |
) | |
train_dataset = datasets.CIFAR10( | |
root + "data/CIFAR10", train=True, transform=train_transform, download=True | |
) | |
test_transform = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
] | |
) | |
test_dataset = datasets.CIFAR10( | |
root + "data/CIFAR10", train=False, transform=test_transform, download=True | |
) | |
return input_size, num_classes, train_dataset, test_dataset | |
class Model(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.resnet = models.resnet18(pretrained=False, num_classes=10) | |
self.resnet.conv1 = torch.nn.Conv2d( | |
3, 64, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.resnet.maxpool = torch.nn.Identity() | |
def forward(self, x): | |
x = self.resnet(x) | |
x = F.log_softmax(x, dim=1) | |
return x | |
def train(model, train_loader, optimizer, epoch): | |
model.train() | |
total_loss = [] | |
for data, target in tqdm(train_loader): | |
data = data.cuda() | |
target = target.cuda() | |
optimizer.zero_grad() | |
prediction = model(data) | |
loss = F.nll_loss(prediction, target) | |
loss.backward() | |
optimizer.step() | |
total_loss.append(loss.item()) | |
avg_loss = sum(total_loss) / len(total_loss) | |
print(f"Epoch: {epoch}:") | |
print(f"Train Set: Average Loss: {avg_loss:.2f}") | |
def test(model, test_loader): | |
model.eval() | |
loss = 0 | |
correct = 0 | |
for data, target in test_loader: | |
with torch.no_grad(): | |
data = data.cuda() | |
target = target.cuda() | |
prediction = model(data) | |
loss += F.nll_loss(prediction, target, reduction="sum") | |
prediction = prediction.max(1)[1] | |
correct += prediction.eq(target.view_as(prediction)).sum().item() | |
loss /= len(test_loader.dataset) | |
percentage_correct = 100.0 * correct / len(test_loader.dataset) | |
print( | |
"Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)".format( | |
loss, correct, len(test_loader.dataset), percentage_correct | |
) | |
) | |
return loss, percentage_correct | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--epochs", type=int, default=45, help="number of epochs to train (default: 45)" | |
) | |
parser.add_argument( | |
"--lr", type=float, default=0.05, help="learning rate (default: 0.05)" | |
) | |
parser.add_argument("--seed", type=int, default=1, help="random seed (default: 1)") | |
args = parser.parse_args() | |
print(args) | |
torch.manual_seed(args.seed) | |
input_size, num_classes, train_dataset, test_dataset = get_CIFAR10() | |
kwargs = {"num_workers": 2, "pin_memory": True} | |
train_loader = torch.utils.data.DataLoader( | |
train_dataset, batch_size=128, shuffle=True, **kwargs | |
) | |
test_loader = torch.utils.data.DataLoader( | |
test_dataset, batch_size=5000, shuffle=False, **kwargs | |
) | |
model = Model() | |
model = model.cuda() | |
milestones = [15, 30] | |
optimizer = torch.optim.SGD( | |
model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4 | |
) | |
scheduler = torch.optim.lr_scheduler.MultiStepLR( | |
optimizer, milestones=milestones, gamma=0.1 | |
) | |
for epoch in range(1, args.epochs + 1): | |
train(model, train_loader, optimizer, epoch) | |
test(model, test_loader) | |
scheduler.step() | |
torch.save(model.state_dict(), "cifar_model.pt") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment