Created
July 26, 2022 22:21
-
-
Save milescsmith/a54a2c4debdbebafbd9fd3a3400911e3 to your computer and use it in GitHub Desktop.
function to score modules using the method from Tirosh et. al (2006)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| utils::globalVariables("where") | |
| tirosh_score_modules <- function( | |
| expr_obj, # rows == genes, columns == samples | |
| module_list, # named list | |
| breaks = 25, # int | |
| num_ctrls = 100, # int | |
| parallel = FALSE # bool | |
| ) { | |
| if (parallel == TRUE){ | |
| map_func = furrr::future_map | |
| imap_dfr_func = furrr::future_imap_dfr | |
| imap_func = furrr::future_imap | |
| } else { | |
| map_func = purrr::map | |
| imap_dfr_func = purrr::imap_dfr | |
| imap_func = purrr::imap | |
| } | |
| expr_obj <- expr_obj[!base::duplicated(rowMeans(expr_obj)), ] | |
| data_avg <- Matrix::rowMeans(x = expr_obj) | |
| data_avg <- data_avg[order(data_avg)] | |
| data_cut <- | |
| ggplot2::cut_number( | |
| x = data_avg + rnorm(n = length(data_avg)) / 1e30, | |
| n = num_ctrls, | |
| labels = FALSE, | |
| right = FALSE | |
| ) | |
| names(x = data_cut) <- names(x = data_avg) | |
| ctrl_use <- | |
| imap_func( | |
| .x = module_list, | |
| .f = \(module_features, index){ | |
| module_features_use <- intersect(module_features, rownames(expr_obj)) | |
| map_func( | |
| .x = module_features_use, | |
| .f = \(feature){ | |
| names( | |
| x = sample( | |
| x = data_cut[which(x = data_cut == data_cut[feature])], | |
| size = num_ctrls, | |
| replace = FALSE | |
| ) | |
| ) | |
| }) |> | |
| unlist() |> | |
| unique() | |
| }) | |
| message("found bins") | |
| ctrl_scores <- | |
| imap_dfr_func( | |
| .x = ctrl_use, | |
| .f = \(features, index){ | |
| expr_obj |> | |
| tibble::as_tibble(rownames = "gene") |> | |
| dplyr::filter(gene %in% features) |> | |
| dplyr::summarise( | |
| dplyr::across( | |
| where(is.numeric), | |
| mean | |
| ) | |
| ) |> | |
| tidyr::pivot_longer(cols = everything()) |> | |
| tibble::deframe() | |
| }) | |
| message("scored control bins") | |
| feature_scores <- | |
| imap_dfr_func( | |
| .x = module_list, | |
| .f = \(features, index) { | |
| expr_obj |> | |
| tibble::as_tibble(rownames = "gene") |> | |
| dplyr::filter(gene %in% features) |> | |
| dplyr::summarise( | |
| dplyr::across( | |
| where(is.numeric), | |
| mean | |
| ) | |
| ) |> | |
| tidyr::pivot_longer(cols = everything()) |> | |
| tibble::deframe() | |
| }) | |
| message("scored modules") | |
| module_scores <- feature_scores - ctrl_scores | |
| module_scores <- | |
| module_scores |> | |
| magrittr::set_rownames(names(module_list)) |> | |
| magrittr::set_colnames(colnames(expr_obj)) |> | |
| as.data.frame() | |
| module_scores | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment