Created
June 19, 2017 09:00
-
-
Save milhidaka/bc7899b536f2a54778c3b78e0191fb96 to your computer and use it in GitHub Desktop.
reproduce same result as imdb_lstm model using numpy
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# reproduce lstm prediction by basic numpy operations | |
# model trained on imdb_lstm.py | |
# based on https://github.com/fchollet/keras/blob/master/keras/layers/recurrent.py#L1130 | |
import numpy as np | |
from scipy.special import expit # logistic function | |
import h5py | |
""" | |
{'class_name': 'Sequential', | |
'config': [{'class_name': 'Embedding', | |
'config': {'activity_regularizer': None, | |
'batch_input_shape': [None, None], | |
'dtype': 'int32', | |
'embeddings_constraint': None, | |
'embeddings_initializer': {'class_name': 'RandomUniform', | |
'config': {'maxval': 0.05, 'minval': -0.05, 'seed': None}}, | |
'embeddings_regularizer': None, | |
'input_dim': 20000, | |
'input_length': None, | |
'mask_zero': False, | |
'name': 'embedding_1', | |
'output_dim': 128, | |
'trainable': True}}, | |
{'class_name': 'LSTM', | |
'config': {'activation': 'tanh', | |
'activity_regularizer': None, | |
'bias_constraint': None, | |
'bias_initializer': {'class_name': 'Zeros', 'config': {}}, | |
'bias_regularizer': None, | |
'dropout': 0.2, | |
'go_backwards': False, | |
'implementation': 0, | |
'kernel_constraint': None, | |
'kernel_initializer': {'class_name': 'VarianceScaling', | |
'config': {'distribution': 'uniform', | |
'mode': 'fan_avg', | |
'scale': 1.0, | |
'seed': None}}, | |
'kernel_regularizer': None, | |
'name': 'lstm_1', | |
'recurrent_activation': 'hard_sigmoid', | |
'recurrent_constraint': None, | |
'recurrent_dropout': 0.2, | |
'recurrent_initializer': {'class_name': 'Orthogonal', | |
'config': {'gain': 1.0, 'seed': None}}, | |
'recurrent_regularizer': None, | |
'return_sequences': False, | |
'stateful': False, | |
'trainable': True, | |
'unit_forget_bias': True, | |
'units': 128, | |
'unroll': False, | |
'use_bias': True}}, | |
{'class_name': 'Dense', | |
'config': {'activation': 'sigmoid', | |
'activity_regularizer': None, | |
'bias_constraint': None, | |
'bias_initializer': {'class_name': 'Zeros', 'config': {}}, | |
'bias_regularizer': None, | |
'kernel_constraint': None, | |
'kernel_initializer': {'class_name': 'VarianceScaling', | |
'config': {'distribution': 'uniform', | |
'mode': 'fan_avg', | |
'scale': 1.0, | |
'seed': None}}, | |
'kernel_regularizer': None, | |
'name': 'dense_1', | |
'trainable': True, | |
'units': 1, | |
'use_bias': True}}]} | |
""" | |
def hard_sigmoid(x): | |
return np.clip(x * 0.2 + 0.5, 0.0, 1.0) | |
max_features = 20000 | |
# cut texts after this number of words (among top max_features most common | |
# words) | |
maxlen = 80 | |
batch_size = 32 | |
hidden_dim = 128 | |
result = np.load("imdb_lstm_result.npz") | |
x_test = result["x_test"] | |
y_test = result["y_test"] | |
pred_test = result["pred_test"] | |
model_data = h5py.File("imdb_lstm.h5") | |
# (20000, 128) | |
w_embedding = model_data["model_weights/embedding_1/embedding_1/embeddings:0"].value | |
# (128, 512) | |
w_lstm_kernel = model_data["model_weights/lstm_1/lstm_1/kernel:0"].value | |
# (128, 512) | |
w_lstm_recurrent_kernel = model_data["model_weights/lstm_1/lstm_1/recurrent_kernel:0"].value | |
# (512, ) | |
w_lstm_bias = model_data["model_weights/lstm_1/lstm_1/bias:0"].value | |
# (128, 1) | |
w_dense_kernel = model_data["model_weights/dense_1/dense_1/kernel:0"].value | |
# (1, ) | |
w_dense_bias = model_data["model_weights/dense_1/dense_1/bias:0"].value | |
for i in range(10): # len(x_test)): | |
lstm_h = np.zeros((hidden_dim, ), dtype=np.float32) | |
lstm_cs = np.zeros((hidden_dim, ), dtype=np.float32) | |
x_embedded = w_embedding[x_test[i]] # (time, 128) | |
for t in range(len(x_embedded)): | |
lstm_vec = np.dot(x_embedded[t], w_lstm_kernel) + \ | |
np.dot(lstm_h, w_lstm_recurrent_kernel) + w_lstm_bias | |
lstm_i = lstm_vec[hidden_dim * 0:hidden_dim * 1] | |
lstm_f = lstm_vec[hidden_dim * 1:hidden_dim * 2] | |
lstm_ci = lstm_vec[hidden_dim * 2:hidden_dim * 3] | |
lstm_o = lstm_vec[hidden_dim * 3:hidden_dim * 4] | |
lstm_i = hard_sigmoid(lstm_i) | |
lstm_f = hard_sigmoid(lstm_f) | |
lstm_ci = np.tanh(lstm_ci) | |
lstm_cs = lstm_ci * lstm_i + lstm_cs * lstm_f | |
lstm_o = hard_sigmoid(lstm_o) | |
lstm_co = np.tanh(lstm_cs) | |
lstm_h = lstm_co * lstm_o | |
pred = expit(np.dot(lstm_h, w_dense_kernel) + w_dense_bias) | |
print(pred, pred_test[i]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment