Skip to content

Instantly share code, notes, and snippets.

@milkbread
Created July 2, 2013 14:09
Show Gist options
  • Save milkbread/5909613 to your computer and use it in GitHub Desktop.
Save milkbread/5909613 to your computer and use it in GitHub Desktop.
JavaScript: Simplification libraries
var simplifyPath = function( points, tolerance ) {
// helper classes
var Vector = function( x, y ) {
this.x = x;
this.y = y;
};
var Line = function( p1, p2 ) {
this.p1 = p1;
this.p2 = p2;
this.distanceToPoint = function( point ) {
// slope
var m = ( this.p2.y - this.p1.y ) / ( this.p2.x - this.p1.x ),
// y offset
b = this.p1.y - ( m * this.p1.x ),
d = [];
// distance to the linear equation
d.push( Math.abs( point.y - ( m * point.x ) - b ) / Math.sqrt( Math.pow( m, 2 ) + 1 ) );
// distance to p1
d.push( Math.sqrt( Math.pow( ( point.x - this.p1.x ), 2 ) + Math.pow( ( point.y - this.p1.y ), 2 ) ) );
// distance to p2
d.push( Math.sqrt( Math.pow( ( point.x - this.p2.x ), 2 ) + Math.pow( ( point.y - this.p2.y ), 2 ) ) );
// return the smallest distance
return d.sort( function( a, b ) {
return ( a - b ); //causes an array to be sorted numerically and ascending
} )[0];
};
};
var douglasPeucker = function( points, tolerance ) {
if ( points.length <= 2 ) {
return [points[0]];
}
var returnPoints = [],
// make line from start to end
line = new Line( points[0], points[points.length - 1] ),
// find the largest distance from intermediate poitns to this line
maxDistance = 0,
maxDistanceIndex = 0,
p;
for( var i = 1; i <= points.length - 2; i++ ) {
var distance = line.distanceToPoint( points[ i ] );
if( distance > maxDistance ) {
maxDistance = distance;
maxDistanceIndex = i;
}
}
// check if the max distance is greater than our tollerance allows
if ( maxDistance >= tolerance ) {
p = points[maxDistanceIndex];
line.distanceToPoint( p, true );
// include this point in the output
returnPoints = returnPoints.concat( douglasPeucker( points.slice( 0, maxDistanceIndex + 1 ), tolerance ) );
// returnPoints.push( points[maxDistanceIndex] );
returnPoints = returnPoints.concat( douglasPeucker( points.slice( maxDistanceIndex, points.length ), tolerance ) );
} else {
// ditching this point
p = points[maxDistanceIndex];
line.distanceToPoint( p, true );
returnPoints = [points[0]];
}
return returnPoints;
};
var arr = douglasPeucker( points, tolerance );
// always have to push the very last point on so it doesn't get left off
arr.push( points[points.length - 1 ] );
return arr;
};
/*
Copyright (c) 2013, Vladimir Agafonkin
Simplify.js is a high-performance JS polyline simplification library
mourner.github.io/simplify-js
*/
(function (global, undefined) {
"use strict";
// to suit your point format, run search/replace for '.x' and '.y';
// to switch to 3D, uncomment the lines in the next 2 functions
// (configurability would draw significant performance overhead)
function getSquareDistance(p1, p2) { // square distance between 2 points
var dx = p1.x - p2.x,
// dz = p1.z - p2.z,
dy = p1.y - p2.y;
return dx * dx +
// dz * dz +
dy * dy;
}
function getSquareSegmentDistance(p, p1, p2) { // square distance from a point to a segment
var x = p1.x,
y = p1.y,
// z = p1.z,
dx = p2.x - x,
dy = p2.y - y,
// dz = p2.z - z,
t;
if (dx !== 0 || dy !== 0) {
t = ((p.x - x) * dx +
// (p.z - z) * dz +
(p.y - y) * dy) /
(dx * dx +
// dz * dz +
dy * dy);
if (t > 1) {
x = p2.x;
y = p2.y;
// z = p2.z;
} else if (t > 0) {
x += dx * t;
y += dy * t;
// z += dz * t;
}
}
dx = p.x - x;
dy = p.y - y;
// dz = p.z - z;
return dx * dx +
// dz * dz +
dy * dy;
}
// the rest of the code doesn't care for the point format
// basic distance-based simplification
function simplifyRadialDistance(points, sqTolerance) {
var i,
len = points.length,
point,
prevPoint = points[0],
newPoints = [prevPoint];
for (i = 1; i < len; i++) {
point = points[i];
if (getSquareDistance(point, prevPoint) > sqTolerance) {
newPoints.push(point);
prevPoint = point;
}
}
if (prevPoint !== point) {
newPoints.push(point);
}
return newPoints;
}
// simplification using optimized Douglas-Peucker algorithm with recursion elimination
function simplifyDouglasPeucker(points, sqTolerance) {
var len = points.length,
MarkerArray = (typeof Uint8Array !== undefined + '')
? Uint8Array
: Array,
markers = new MarkerArray(len),
first = 0,
last = len - 1,
i,
maxSqDist,
sqDist,
index,
firstStack = [],
lastStack = [],
newPoints = [];
markers[first] = markers[last] = 1;
while (last) {
maxSqDist = 0;
for (i = first + 1; i < last; i++) {
sqDist = getSquareSegmentDistance(points[i], points[first], points[last]);
if (sqDist > maxSqDist) {
index = i;
maxSqDist = sqDist;
}
}
if (maxSqDist > sqTolerance) {
markers[index] = 1;
firstStack.push(first);
lastStack.push(index);
firstStack.push(index);
lastStack.push(last);
}
first = firstStack.pop();
last = lastStack.pop();
}
for (i = 0; i < len; i++) {
if (markers[i]) {
newPoints.push(points[i]);
}
}
return newPoints;
}
// both algorithms combined for awesome performance
function simplify(points, tolerance, highestQuality) {
var sqTolerance = tolerance !== undefined ? tolerance * tolerance : 1;
points = highestQuality ? points : simplifyRadialDistance(points, sqTolerance);
points = simplifyDouglasPeucker(points, sqTolerance);
return points;
};
// export either as a Node.js module, AMD module or a global browser variable
if (typeof exports === 'object') {
module.exports = simplify;
} else if (typeof define === 'function' && define.amd) {
define(function () {
return simplify;
});
} else {
global.simplify = simplify;
}
}(this));
(function() {
d3.simplify = function() {
var projection = d3.geo.mercator();
function simplify(feature) {
if (feature.type !== "MultiPolygon") throw new Error("not yet supported");
var heap = minHeap(),
maxArea = 0,
triangle;
feature.coordinates = feature.coordinates.map(function(polygon) {
return polygon.map(function(lineString) {
var points = lineString.map(projection),
triangles = [];
for (var i = 1, n = lineString.length - 1; i < n; ++i) {
triangle = points.slice(i - 1, i + 2);
if (triangle[1][2] = area(triangle)) {
triangles.push(triangle);
heap.push(triangle);
}
}
for (var i = 0, n = triangles.length; i < n; ++i) {
triangle = triangles[i];
triangle.previous = triangles[i - 1];
triangle.next = triangles[i + 1];
}
return points;
});
});
while (triangle = heap.pop()) {
// If the area of the current point is less than that of the previous point
// to be eliminated, use the latter’s area instead. This ensures that the
// current point cannot be eliminated without eliminating previously-
// eliminated points.
if (triangle[1][2] < maxArea) triangle[1][2] = maxArea;
else maxArea = triangle[1][2];
if (triangle.previous) {
triangle.previous.next = triangle.next;
triangle.previous[2] = triangle[2];
update(triangle.previous);
} else {
triangle[0][2] = triangle[1][2];
}
if (triangle.next) {
triangle.next.previous = triangle.previous;
triangle.next[0] = triangle[0];
update(triangle.next);
} else {
triangle[2][2] = triangle[1][2];
}
}
function update(triangle) {
heap.remove(triangle);
triangle[1][2] = area(triangle);
heap.push(triangle);
}
return feature;
}
simplify.projection = function(_) {
if (!arguments.length) return projection;
projection = _;
return simplify;
};
return simplify;
};
function compare(a, b) {
return a[1][2] - b[1][2];
}
function area(t) {
return Math.abs((t[0][0] - t[2][0]) * (t[1][1] - t[0][1]) - (t[0][0] - t[1][0]) * (t[2][1] - t[0][1]));
}
function minHeap() {
var heap = {},
array = [];
heap.push = function() {
for (var i = 0, n = arguments.length; i < n; ++i) {
var object = arguments[i];
up(object.index = array.push(object) - 1);
}
return array.length;
};
heap.pop = function() {
var removed = array[0],
object = array.pop();
if (array.length) {
array[object.index = 0] = object;
down(0);
}
return removed;
};
heap.remove = function(removed) {
var i = removed.index,
object = array.pop();
if (i !== array.length) {
array[object.index = i] = object;
(compare(object, removed) < 0 ? up : down)(i);
}
return i;
};
function up(i) {
var object = array[i];
while (i > 0) {
var up = ((i + 1) >> 1) - 1,
parent = array[up];
if (compare(object, parent) >= 0) break;
array[parent.index = i] = parent;
array[object.index = i = up] = object;
}
}
function down(i) {
var object = array[i];
while (true) {
var right = (i + 1) << 1,
left = right - 1,
down = i,
child = array[down];
if (left < array.length && compare(array[left], child) < 0) child = array[down = left];
if (right < array.length && compare(array[right], child) < 0) child = array[down = right];
if (down === i) break;
array[child.index = i] = child;
array[object.index = i = down] = object;
}
}
return heap;
}
})();
(function() {
d3.simplify = function() {
var projection = d3.geo.mercator();
function simplify(feature) {
if (feature.type !== "MultiPolygon" && feature.type !== "LineString" && feature.type !== "Polygon" && feature.type !== "MultiLineString") throw new Error("not yet supported");
var heap = minHeap(),
maxArea = 0,
triangle;
if (feature.type == "LineString"){
triangles = [];
var points = feature.coordinates
for (var i=1;i<points.length-1;i++){
var point = feature.coordinates[i];
triangle = points.slice(i - 1, i + 2);
if (triangle[1][2] = area(triangle)) {
triangles.push(triangle);
heap.push(triangle);
}
}
feature.coordinates = feature.coordinates.map(function(lineString) {
var points = lineString.map(projection);
for (var i = 1, n = lineString.length - 1; i < n; ++i) {
triangle = points.slice(i - 1, i + 2);
if (triangle[1][2] = area(triangle)) {
triangles.push(triangle);
heap.push(triangle);
}
}
for (var i = 0, n = triangles.length; i < n; ++i) {
triangle = triangles[i];
triangle.previous = triangles[i - 1];
triangle.next = triangles[i + 1];
}
return points;
});
}
else if (feature.type == "Polygon"){
feature.coordinates = feature.coordinates.map(function(lineString) {
var points = lineString.map(projection),
triangles = [];
for (var i = 1, n = lineString.length - 1; i < n; ++i) {
triangle = points.slice(i - 1, i + 2);
if (triangle[1][2] = area(triangle)) {
triangles.push(triangle);
heap.push(triangle);
}
}
for (var i = 0, n = triangles.length; i < n; ++i) {
triangle = triangles[i];
triangle.previous = triangles[i - 1];
triangle.next = triangles[i + 1];
}
return points;
});
}
else if (feature.type == "MultiLineString"){
feature.coordinates = feature.coordinates.map(function(lineString){
// console.log(lineString.length);
var points = lineString.map(projection),
triangles = [];
// console.log(points);
for (var i = 1, n = lineString.length - 1; i < n; ++i) {
triangle = points.slice(i - 1, i + 2);
if (triangle[1][2] = area(triangle)) {
triangles.push(triangle);
heap.push(triangle);
}
}
for (var i = 0, n = triangles.length; i < n; ++i) {
triangle = triangles[i];
triangle.previous = triangles[i - 1];
triangle.next = triangles[i + 1];
}
// console.log(points);
return points;
});
}
else if (feature.type == "MultiPolygon"){
feature.coordinates = feature.coordinates.map(function(polygon) {
return polygon.map(function(lineString) {
var points = lineString.map(projection),
triangles = [];
for (var i = 1, n = lineString.length - 1; i < n; ++i) {
triangle = points.slice(i - 1, i + 2);
if (triangle[1][2] = area(triangle)) {
triangles.push(triangle);
heap.push(triangle);
}
}
for (var i = 0, n = triangles.length; i < n; ++i) {
triangle = triangles[i];
triangle.previous = triangles[i - 1];
triangle.next = triangles[i + 1];
}
return points;
});
});
}
while (triangle = heap.pop()) {
// If the area of the current point is less than that of the previous point
// to be eliminated, use the latter’s area instead. This ensures that the
// current point cannot be eliminated without eliminating previously-
// eliminated points.
if (triangle[1][2] < maxArea) triangle[1][2] = maxArea;
else maxArea = triangle[1][2];
if (triangle.previous) {
triangle.previous.next = triangle.next;
triangle.previous[2] = triangle[2];
update(triangle.previous);
} else {
triangle[0][2] = triangle[1][2];
}
if (triangle.next) {
triangle.next.previous = triangle.previous;
triangle.next[0] = triangle[0];
update(triangle.next);
} else {
triangle[2][2] = triangle[1][2];
}
}
function update(triangle) {
heap.remove(triangle);
triangle[1][2] = area(triangle);
heap.push(triangle);
}
return feature;
}
simplify.projection = function(_) {
if (!arguments.length) return projection;
projection = _;
return simplify;
};
return simplify;
};
function compare(a, b) {
return a[1][2] - b[1][2];
}
function area(t) {
return Math.abs((t[0][0] - t[2][0]) * (t[1][1] - t[0][1]) - (t[0][0] - t[1][0]) * (t[2][1] - t[0][1]));
}
function minHeap() {
var heap = {},
array = [];
heap.push = function() {
for (var i = 0, n = arguments.length; i < n; ++i) {
var object = arguments[i];
up(object.index = array.push(object) - 1);
}
return array.length;
};
heap.pop = function() {
var removed = array[0],
object = array.pop();
if (array.length) {
array[object.index = 0] = object;
down(0);
}
return removed;
};
heap.remove = function(removed) {
var i = removed.index,
object = array.pop();
if (i !== array.length) {
array[object.index = i] = object;
(compare(object, removed) < 0 ? up : down)(i);
}
return i;
};
function up(i) {
var object = array[i];
while (i > 0) {
var up = ((i + 1) >> 1) - 1,
parent = array[up];
if (compare(object, parent) >= 0) break;
array[parent.index = i] = parent;
array[object.index = i = up] = object;
}
}
function down(i) {
var object = array[i];
while (true) {
var right = (i + 1) << 1,
left = right - 1,
down = i,
child = array[down];
if (left < array.length && compare(array[left], child) < 0) child = array[down = left];
if (right < array.length && compare(array[right], child) < 0) child = array[down = right];
if (down === i) break;
array[child.index = i] = child;
array[object.index = i = down] = object;
}
}
return heap;
}
})();
(function() {
d3.simplify = function() {
var projection = d3.geo.mercator();
function simplify(feature) {
if (feature.type !== "MultiPolygon" && feature.type !== "LineString") throw new Error("not yet supported");
var heap = minHeap(),
maxArea = 0,
triangle;
//Reform the coordinates to have them in the formatting of a 'MultiPolygon'
if (feature.type == "LineString")feature.coordinates=[[feature.coordinates]]
feature.coordinates = feature.coordinates.map(function(polygon) {
return polygon.map(function(lineString) {
var points = lineString.map(projection),
triangles = [];
for (var i = 1, n = lineString.length - 1; i < n; ++i) {
triangle = points.slice(i - 1, i + 2);
if (triangle[1][2] = area(triangle)) {
triangles.push(triangle);
heap.push(triangle);
}
}
for (var i = 0, n = triangles.length; i < n; ++i) {
triangle = triangles[i];
triangle.previous = triangles[i - 1];
triangle.next = triangles[i + 1];
}
return points;
});
});
while (triangle = heap.pop()) {
// If the area of the current point is less than that of the previous point
// to be eliminated, use the latter’s area instead. This ensures that the
// current point cannot be eliminated without eliminating previously-
// eliminated points.
if (triangle[1][2] < maxArea) triangle[1][2] = maxArea;
else maxArea = triangle[1][2];
if (triangle.previous) {
triangle.previous.next = triangle.next;
triangle.previous[2] = triangle[2];
update(triangle.previous);
} else {
triangle[0][2] = triangle[1][2];
}
if (triangle.next) {
triangle.next.previous = triangle.previous;
triangle.next[0] = triangle[0];
update(triangle.next);
} else {
triangle[2][2] = triangle[1][2];
}
}
function update(triangle) {
heap.remove(triangle);
triangle[1][2] = area(triangle);
heap.push(triangle);
}
return feature;
}
simplify.projection = function(_) {
if (!arguments.length) return projection;
projection = _;
return simplify;
};
return simplify;
};
function compare(a, b) {
return a[1][2] - b[1][2];
}
function area(t) {
return Math.abs((t[0][0] - t[2][0]) * (t[1][1] - t[0][1]) - (t[0][0] - t[1][0]) * (t[2][1] - t[0][1]));
}
function minHeap() {
var heap = {},
array = [];
heap.push = function() {
for (var i = 0, n = arguments.length; i < n; ++i) {
var object = arguments[i];
up(object.index = array.push(object) - 1);
}
return array.length;
};
heap.pop = function() {
var removed = array[0],
object = array.pop();
if (array.length) {
array[object.index = 0] = object;
down(0);
}
return removed;
};
heap.remove = function(removed) {
var i = removed.index,
object = array.pop();
if (i !== array.length) {
array[object.index = i] = object;
(compare(object, removed) < 0 ? up : down)(i);
}
return i;
};
function up(i) {
var object = array[i];
while (i > 0) {
var up = ((i + 1) >> 1) - 1,
parent = array[up];
if (compare(object, parent) >= 0) break;
array[parent.index = i] = parent;
array[object.index = i = up] = object;
}
}
function down(i) {
var object = array[i];
while (true) {
var right = (i + 1) << 1,
left = right - 1,
down = i,
child = array[down];
if (left < array.length && compare(array[left], child) < 0) child = array[down = left];
if (right < array.length && compare(array[right], child) < 0) child = array[down = right];
if (down === i) break;
array[child.index = i] = child;
array[object.index = i = down] = object;
}
}
return heap;
}
})();
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment