Created
January 11, 2025 03:00
-
-
Save mimoo/3fc9c9d6b49d358590ab76cb3d3188fc to your computer and use it in GitHub Desktop.
Parse your whoop data to analyze your REM sleep
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import pandas as pd | |
from typing import Optional | |
from pydantic import BaseModel, field_validator, ValidationError | |
from datetime import datetime | |
# Define the Pydantic model for sleep data | |
class SleepData(BaseModel): | |
cycle_start_time: datetime | None | |
cycle_end_time: datetime | None | |
cycle_timezone: str | |
sleep_onset: datetime | |
wake_onset: datetime | |
sleep_performance: int | |
respiratory_rate: float | |
asleep_duration: int | |
in_bed_duration: int | |
light_sleep_duration: int | |
deep_sws_duration: int | |
rem_duration: int | |
awake_duration: int | |
sleep_need: int | |
sleep_debt: int | None | |
sleep_efficiency: int | |
sleep_consistency: int | None | |
nap: bool | |
# Validator for boolean fields represented as 'true/false' in the CSV | |
@field_validator("nap", mode="before") | |
def parse_boolean(cls, value): | |
if isinstance(value, bool): | |
return value | |
return value.lower() == "true" | |
# Validator to handle optional fields with NaN values | |
@field_validator("cycle_end_time", "sleep_consistency", mode="before") | |
def handle_optional_nan(cls, value): | |
if pd.isna(value): | |
return None | |
return value | |
def to_dict(self): | |
"""Convert the model instance to a dictionary.""" | |
return self.dict() | |
def read_and_parse_csv(file_path: str): | |
"""Read the sleeps.csv file and parse it using the SleepData model.""" | |
try: | |
# Read the CSV file into a Pandas DataFrame | |
df = pd.read_csv(file_path) | |
# Rename columns to match the Pydantic model's attributes | |
df.columns = [ | |
"cycle_start_time", | |
"cycle_end_time", | |
"cycle_timezone", | |
"sleep_onset", | |
"wake_onset", | |
"sleep_performance", | |
"respiratory_rate", | |
"asleep_duration", | |
"in_bed_duration", | |
"light_sleep_duration", | |
"deep_sws_duration", | |
"rem_duration", | |
"awake_duration", | |
"sleep_need", | |
"sleep_debt", | |
"sleep_efficiency", | |
"sleep_consistency", | |
"nap", | |
] | |
# Parse each row using the Pydantic model | |
sleep_data = [] | |
for row in df.to_dict(orient="records"): | |
try: | |
sleep_data.append(SleepData(**row)) | |
except ValidationError as e: | |
print(f"Validation error for row {row}: {e}") | |
return sleep_data | |
except Exception as e: | |
print(f"Error parsing the CSV file: {e}") | |
return [] | |
def generate_html_report(sleep_data, output_file): | |
"""Generate an HTML report with two graphs.""" | |
dates = [data.sleep_onset.strftime("%Y-%m-%d") for data in sleep_data] | |
rem_durations = [data.rem_duration for data in sleep_data] | |
# Reverse the order of dates and REM durations for chronological display | |
dates.reverse() | |
rem_durations.reverse() | |
# Calculate monthly averages | |
df = pd.DataFrame({"date": dates, "rem_duration": rem_durations}) | |
df["date"] = pd.to_datetime(df["date"]) | |
df["month"] = df["date"].dt.to_period("M") | |
monthly_avg = df.groupby("month")["rem_duration"].mean() | |
# Convert to JavaScript-friendly formats | |
monthly_avg_labels = [str(month) for month in monthly_avg.index] | |
monthly_avg_values = [ | |
float(value) for value in monthly_avg.values | |
] # Convert np.float64 to float | |
html_template = f""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Sleep Data Report</title> | |
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script> | |
</head> | |
<body> | |
<h1>Sleep Data Report</h1> | |
<h2>Daily REM Durations</h2> | |
<canvas id="remChart" width="800" height="400"></canvas> | |
<h2>Monthly Average REM Durations</h2> | |
<canvas id="monthlyAvgChart" width="800" height="400"></canvas> | |
<script> | |
// Chart for Daily REM Durations | |
const remCtx = document.getElementById('remChart').getContext('2d'); | |
const remChart = new Chart(remCtx, {{ | |
type: 'bar', | |
data: {{ | |
labels: {dates}, | |
datasets: [{{ | |
label: 'Daily REM Duration (min)', | |
data: {rem_durations}, | |
backgroundColor: 'rgba(75, 192, 192, 0.2)', | |
borderColor: 'rgba(75, 192, 192, 1)', | |
borderWidth: 1 | |
}}] | |
}}, | |
options: {{ | |
scales: {{ | |
x: {{ | |
type: 'category', | |
title: {{ | |
display: true, | |
text: 'Date' | |
}} | |
}}, | |
y: {{ | |
beginAtZero: true, | |
title: {{ | |
display: true, | |
text: 'REM Duration (min)' | |
}} | |
}} | |
}} | |
}} | |
}}); | |
// Chart for Monthly Average REM Durations | |
const avgCtx = document.getElementById('monthlyAvgChart').getContext('2d'); | |
const avgChart = new Chart(avgCtx, {{ | |
type: 'line', | |
data: {{ | |
labels: {monthly_avg_labels}, | |
datasets: [{{ | |
label: 'Monthly Average REM Duration (min)', | |
data: {monthly_avg_values}, | |
backgroundColor: 'rgba(153, 102, 255, 0.2)', | |
borderColor: 'rgba(153, 102, 255, 1)', | |
borderWidth: 2, | |
fill: true | |
}}] | |
}}, | |
options: {{ | |
scales: {{ | |
x: {{ | |
type: 'category', | |
title: {{ | |
display: true, | |
text: 'Month' | |
}} | |
}}, | |
y: {{ | |
beginAtZero: true, | |
title: {{ | |
display: true, | |
text: 'Average REM Duration (min)' | |
}} | |
}} | |
}} | |
}} | |
}}); | |
</script> | |
</body> | |
</html> | |
""" | |
with open(output_file, "w") as file: | |
file.write(html_template) | |
def main(): | |
parser = argparse.ArgumentParser( | |
description="Parse and validate a sleeps.csv file." | |
) | |
parser.add_argument("file", type=str, help="Path to the sleeps.csv file") | |
parser.add_argument("output", type=str, help="Path to the output HTML file") | |
args = parser.parse_args() | |
sleep_data = read_and_parse_csv(args.file) | |
if sleep_data: | |
print("Generating HTML report...") | |
generate_html_report(sleep_data, args.output) | |
print(f"Report generated: {args.output}") | |
else: | |
print("No valid data found in the file.") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment