Skip to content

Instantly share code, notes, and snippets.

@mimoo
Created January 11, 2025 03:00
Show Gist options
  • Save mimoo/3fc9c9d6b49d358590ab76cb3d3188fc to your computer and use it in GitHub Desktop.
Save mimoo/3fc9c9d6b49d358590ab76cb3d3188fc to your computer and use it in GitHub Desktop.
Parse your whoop data to analyze your REM sleep
import argparse
import pandas as pd
from typing import Optional
from pydantic import BaseModel, field_validator, ValidationError
from datetime import datetime
# Define the Pydantic model for sleep data
class SleepData(BaseModel):
cycle_start_time: datetime | None
cycle_end_time: datetime | None
cycle_timezone: str
sleep_onset: datetime
wake_onset: datetime
sleep_performance: int
respiratory_rate: float
asleep_duration: int
in_bed_duration: int
light_sleep_duration: int
deep_sws_duration: int
rem_duration: int
awake_duration: int
sleep_need: int
sleep_debt: int | None
sleep_efficiency: int
sleep_consistency: int | None
nap: bool
# Validator for boolean fields represented as 'true/false' in the CSV
@field_validator("nap", mode="before")
def parse_boolean(cls, value):
if isinstance(value, bool):
return value
return value.lower() == "true"
# Validator to handle optional fields with NaN values
@field_validator("cycle_end_time", "sleep_consistency", mode="before")
def handle_optional_nan(cls, value):
if pd.isna(value):
return None
return value
def to_dict(self):
"""Convert the model instance to a dictionary."""
return self.dict()
def read_and_parse_csv(file_path: str):
"""Read the sleeps.csv file and parse it using the SleepData model."""
try:
# Read the CSV file into a Pandas DataFrame
df = pd.read_csv(file_path)
# Rename columns to match the Pydantic model's attributes
df.columns = [
"cycle_start_time",
"cycle_end_time",
"cycle_timezone",
"sleep_onset",
"wake_onset",
"sleep_performance",
"respiratory_rate",
"asleep_duration",
"in_bed_duration",
"light_sleep_duration",
"deep_sws_duration",
"rem_duration",
"awake_duration",
"sleep_need",
"sleep_debt",
"sleep_efficiency",
"sleep_consistency",
"nap",
]
# Parse each row using the Pydantic model
sleep_data = []
for row in df.to_dict(orient="records"):
try:
sleep_data.append(SleepData(**row))
except ValidationError as e:
print(f"Validation error for row {row}: {e}")
return sleep_data
except Exception as e:
print(f"Error parsing the CSV file: {e}")
return []
def generate_html_report(sleep_data, output_file):
"""Generate an HTML report with two graphs."""
dates = [data.sleep_onset.strftime("%Y-%m-%d") for data in sleep_data]
rem_durations = [data.rem_duration for data in sleep_data]
# Reverse the order of dates and REM durations for chronological display
dates.reverse()
rem_durations.reverse()
# Calculate monthly averages
df = pd.DataFrame({"date": dates, "rem_duration": rem_durations})
df["date"] = pd.to_datetime(df["date"])
df["month"] = df["date"].dt.to_period("M")
monthly_avg = df.groupby("month")["rem_duration"].mean()
# Convert to JavaScript-friendly formats
monthly_avg_labels = [str(month) for month in monthly_avg.index]
monthly_avg_values = [
float(value) for value in monthly_avg.values
] # Convert np.float64 to float
html_template = f"""
<!DOCTYPE html>
<html>
<head>
<title>Sleep Data Report</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<h1>Sleep Data Report</h1>
<h2>Daily REM Durations</h2>
<canvas id="remChart" width="800" height="400"></canvas>
<h2>Monthly Average REM Durations</h2>
<canvas id="monthlyAvgChart" width="800" height="400"></canvas>
<script>
// Chart for Daily REM Durations
const remCtx = document.getElementById('remChart').getContext('2d');
const remChart = new Chart(remCtx, {{
type: 'bar',
data: {{
labels: {dates},
datasets: [{{
label: 'Daily REM Duration (min)',
data: {rem_durations},
backgroundColor: 'rgba(75, 192, 192, 0.2)',
borderColor: 'rgba(75, 192, 192, 1)',
borderWidth: 1
}}]
}},
options: {{
scales: {{
x: {{
type: 'category',
title: {{
display: true,
text: 'Date'
}}
}},
y: {{
beginAtZero: true,
title: {{
display: true,
text: 'REM Duration (min)'
}}
}}
}}
}}
}});
// Chart for Monthly Average REM Durations
const avgCtx = document.getElementById('monthlyAvgChart').getContext('2d');
const avgChart = new Chart(avgCtx, {{
type: 'line',
data: {{
labels: {monthly_avg_labels},
datasets: [{{
label: 'Monthly Average REM Duration (min)',
data: {monthly_avg_values},
backgroundColor: 'rgba(153, 102, 255, 0.2)',
borderColor: 'rgba(153, 102, 255, 1)',
borderWidth: 2,
fill: true
}}]
}},
options: {{
scales: {{
x: {{
type: 'category',
title: {{
display: true,
text: 'Month'
}}
}},
y: {{
beginAtZero: true,
title: {{
display: true,
text: 'Average REM Duration (min)'
}}
}}
}}
}}
}});
</script>
</body>
</html>
"""
with open(output_file, "w") as file:
file.write(html_template)
def main():
parser = argparse.ArgumentParser(
description="Parse and validate a sleeps.csv file."
)
parser.add_argument("file", type=str, help="Path to the sleeps.csv file")
parser.add_argument("output", type=str, help="Path to the output HTML file")
args = parser.parse_args()
sleep_data = read_and_parse_csv(args.file)
if sleep_data:
print("Generating HTML report...")
generate_html_report(sleep_data, args.output)
print(f"Report generated: {args.output}")
else:
print("No valid data found in the file.")
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment