Created
February 25, 2017 19:46
-
-
Save mindcrime/eac54feaeb6181d8ed1732ae7ca4ba1f to your computer and use it in GitHub Desktop.
Loading MNIST in Spark (again)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package org.fogbeam.dl4j.spark; | |
import java.util.Arrays; | |
import java.util.List; | |
import org.apache.spark.SparkConf; | |
import org.apache.spark.api.java.JavaPairRDD; | |
import org.apache.spark.api.java.JavaRDD; | |
import org.apache.spark.api.java.JavaSparkContext; | |
import org.apache.spark.input.PortableDataStream; | |
import org.datavec.api.io.labels.ParentPathLabelGenerator; | |
import org.datavec.api.writable.Writable; | |
import org.datavec.image.recordreader.ImageRecordReader; | |
import org.datavec.spark.functions.RecordReaderFunction; | |
import org.deeplearning4j.nn.api.OptimizationAlgorithm; | |
import org.deeplearning4j.nn.conf.MultiLayerConfiguration; | |
import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | |
import org.deeplearning4j.nn.conf.Updater; | |
import org.deeplearning4j.nn.conf.layers.DenseLayer; | |
import org.deeplearning4j.nn.conf.layers.OutputLayer; | |
import org.deeplearning4j.nn.weights.WeightInit; | |
import org.deeplearning4j.spark.api.TrainingMaster; | |
import org.deeplearning4j.spark.datavec.DataVecDataSetFunction; | |
import org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer; | |
import org.deeplearning4j.spark.impl.paramavg.ParameterAveragingTrainingMaster; | |
import org.nd4j.linalg.activations.Activation; | |
import org.nd4j.linalg.dataset.DataSet; | |
import org.nd4j.linalg.lossfunctions.LossFunctions; | |
public class ExpMain2 | |
{ | |
public static void main(String[] args) throws Exception | |
{ | |
SparkConf sparkConf = new SparkConf(); | |
sparkConf.setMaster("local"); | |
sparkConf.setAppName("SparkNeuralNetwork"); | |
JavaSparkContext sc = new JavaSparkContext( sparkConf ); | |
// String recursiveSetting = sc.hadoopConfiguration().get("mapreduce.input.fileinputformat.input.dir.recursive"); | |
// System.out.println( "recursiveSetting: " + recursiveSetting ); | |
JavaPairRDD<String, PortableDataStream> origData = sc.binaryFiles("/home/prhodes/development/experimental/ai_exp/NeuralNetworkSandbox/mnist_png/training/1/*.png"); | |
ImageRecordReader irr = new ImageRecordReader(28,28,1,new ParentPathLabelGenerator()); | |
List<String> labelsList = Arrays.asList("0", "1", "2", "3", "4", "5", "6", "7", "8", "9"); | |
irr.setLabels(labelsList); | |
RecordReaderFunction rrf = new RecordReaderFunction(irr); | |
JavaRDD<List<Writable>> rdd = origData.map(rrf); | |
System.out.println( "DataSet RDD created"); | |
JavaRDD<DataSet> trainingData = rdd.map(new DataVecDataSetFunction(0,10, false)); | |
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() | |
.seed(12345) | |
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1) | |
.activation(Activation.LEAKYRELU) | |
.weightInit(WeightInit.XAVIER) | |
.learningRate(0.02) | |
.updater(Updater.NESTEROVS).momentum(0.9) | |
.regularization(true).l2(1e-4) | |
.list() | |
.layer(0, new DenseLayer.Builder().nIn(28 * 28).nOut(500).build()) | |
.layer(1, new DenseLayer.Builder().nIn(500).nOut(100).build()) | |
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) | |
.activation(Activation.SOFTMAX).nIn(100).nOut(10).build()) | |
.pretrain(false).backprop(true) | |
.build(); | |
// Create the TrainingMaster instance | |
int examplesPerDataSetObject = 1; | |
TrainingMaster trainingMaster = new ParameterAveragingTrainingMaster.Builder(examplesPerDataSetObject) | |
.build(); | |
// Create the SparkDl4jMultiLayer instance | |
// Create the Spark network | |
SparkDl4jMultiLayer sparkNet = new SparkDl4jMultiLayer(sc, conf, trainingMaster); | |
sparkNet.fit( trainingData ); | |
System.out.println( "done" ); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment