PyTorch can be installed via different channels: conda
, pip
, docker
, source code
...
By default, mkl and mkl-dnn are enabled; But this might not always be true, so it is still useful to learn how to check this by yourself:
### check where your torch is installed
python -c 'import torch; print(torch.__path__)'
On my machine, it points to the conda env pytorch-cuda
which i created specifically for cuda runs...
['/home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch']
Next,
cd /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch
cd lib
ldd libtorch.so
This will give all the .so
that PyTorch compiled against...
linux-vdso.so.1 => (0x00007ffe5ef06000)
libgomp.so.1 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libgomp.so.1 (0x00007f0216544000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f0216312000)
libnvToolsExt.so.1 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libnvToolsExt.so.1 (0x00007f0216108000)
libcudart.so.10.0 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libcudart.so.10.0 (0x00007f0215e8b000)
libcaffe2.so => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./libcaffe2.so (0x00007f0212c54000)
libcaffe2_gpu.so => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./libcaffe2_gpu.so (0x00007f01e71c7000)
libc10_cuda.so => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./libc10_cuda.so (0x00007f01e6fa2000)
libc10.so => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./libc10.so (0x00007f01e6d5e000)
libm.so.6 => /lib64/libm.so.6 (0x00007f01e6a5c000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f01e6858000)
libstdc++.so.6 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libstdc++.so.6 (0x00007f01e6716000)
libgcc_s.so.1 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libgcc_s.so.1 (0x00007f01e6702000)
libc.so.6 => /lib64/libc.so.6 (0x00007f01e633f000)
/lib64/ld-linux-x86-64.so.2 (0x000056504e07a000)
librt.so.1 => /lib64/librt.so.1 (0x00007f01e6136000)
libmkl_intel_lp64.so => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libmkl_intel_lp64.so (0x00007f01e55e8000)
libmkl_gnu_thread.so => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libmkl_gnu_thread.so (0x00007f01e3d93000)
libmkl_core.so => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libmkl_core.so (0x00007f01dfc07000)
libcusparse.so.10.0 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libcusparse.so.10.0 (0x00007f01dc198000)
libcurand.so.10.0 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libcurand.so.10.0 (0x00007f01d8030000)
libcufft.so.10.0 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libcufft.so.10.0 (0x00007f01d1b79000)
libcublas.so.10.0 => /home/mingfeim/anaconda3/envs/pytorch-cuda/lib/python3.7/site-packages/torch/lib/./../../../../libcublas.so.10.0 (0x00007f01cd5e0000)
In case you see libmkl_intel_lp64.so
, libmkl_gnu_thread.so
, libmkl_core.so
, your PyTorch has mkl; otherwise not.
Also this is the method to check which mkl is being used in case you have multiple versions installed on your machine, which is particularly useful for intel employees...
python -c 'import torch; a = torch.randn(10); print(a.to_mkldnn().layout)'
On my machine, this will print the tensor's layout which is _mkldnn
, which indicates pytorch is compiled against mkl-dnn
torch._mkldnn
In case you have no mkl-dnn enabled, you will receive a RuntimeError
from to_mkldnn()
...
PyTorch is now shipped with gomp
by default...In case you want to use iomp
, follow use-intel-openmp-library.
Hi @mingfeima, I see. I will work with PyTorch v1.10 to use Mkldnn during training.
Thanks a lot!