Created
May 18, 2018 09:36
-
-
Save mingrui/488f6d6408664ab61a2213c2f79c5e7f to your computer and use it in GitHub Desktop.
dice loss
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class DICELossMultiClass(nn.Module): | |
def __init__(self): | |
super(DICELossMultiClass, self).__init__() | |
def forward(self, output, mask): | |
probs = output[:, 1, :, :] | |
mask = torch.squeeze(mask, 1) | |
num = probs * mask | |
num = torch.sum(num, 2) | |
num = torch.sum(num, 1) | |
# print('num : ', num ) | |
den1 = probs * probs | |
# print('den1 : ', den1.size()) | |
den1 = torch.sum(den1, 2) | |
den1 = torch.sum(den1, 1) | |
# print('den1 2 : ', den1.size()) | |
den2 = mask * mask | |
# print('den2 : ', den2.size()) | |
den2 = torch.sum(den2, 2) | |
den2 = torch.sum(den2, 1) | |
# print('den2 2 : ', den2.size()) | |
eps = 0.0000001 | |
dice = 2 * ((num + eps) / (den1 + den2 + eps)) | |
# dice_eso = dice[:, 1:] | |
dice_eso = dice | |
loss = 1 - torch.sum(dice_eso) / dice_eso.size(0) | |
return loss | |
class DICELoss(nn.Module): | |
def __init__(self): | |
super(DICELoss, self).__init__() | |
def forward(self, output, mask): | |
probs = torch.squeeze(output, 1) | |
mask = torch.squeeze(mask, 1) | |
intersection = probs * mask | |
intersection = torch.sum(intersection, 2) | |
intersection = torch.sum(intersection, 1) | |
# print( num ) | |
den1 = probs * probs | |
# print(den1.size()) | |
den1 = torch.sum(den1, 2) | |
den1 = torch.sum(den1, 1) | |
# print(den1.size()) | |
den2 = mask * mask | |
# print(den2.size()) | |
den2 = torch.sum(den2, 2) | |
den2 = torch.sum(den2, 1) | |
# print(den2.size()) | |
eps = 0.0000001 | |
dice = 2 * ((intersection + eps) / (den1 + den2 + eps)) | |
# dice_eso = dice[:, 1:] | |
dice_eso = dice | |
loss = 1 - torch.sum(dice_eso) / dice_eso.size(0) | |
return loss | |
class DICELoss3D(nn.Module): | |
def __init__(self): | |
super(DICELoss3D, self).__init__() | |
def forward(self, output, mask): | |
batch_size, channel, x, y, z = output.size() | |
total_loss = 0 | |
for i in range(batch_size): | |
for j in range(z): | |
loss = 0 | |
output_z = output[i:i + 1, :, :, :, j] | |
label_z = mask[i, :, :, :, j] | |
softmax_output_z = nn.Softmax2d()(output_z) | |
logsoftmax_output_z = torch.log(softmax_output_z) | |
loss = nn.NLLLoss2d()(logsoftmax_output_z, label_z) | |
total_loss += loss | |
return total_loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment