Last active
November 5, 2015 16:02
-
-
Save minhlab/109b878c2e50784cbd1e to your computer and use it in GitHub Desktop.
I compare the performance of Theano and Torch by two scripts performing multi-classification based on categorical input. These kind of model is important for NLP, similar to Chen & Manning (2014). Surprisingly, Theano is much slower and less accurate than Torch.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Running Torch... | |
Last cost: 0.01029977761209 | |
Time: 0 | |
Using gpu device 0: GeForce GTX 980 | |
Compiling function... | |
Running Theano... | |
Last cost: 3.135782 | |
Time: 6.343242 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require('nn') | |
require('cunn') | |
function model(emb_dims, inp_num, out_dims) | |
local mlp = nn.Sequential() | |
local para = nn.ParallelTable() | |
for i = 1, inp_num do | |
para:add(nn.LookupTable(10000, emb_dims)) | |
end | |
mlp:add(para) | |
mlp:add(nn.JoinTable(2)) | |
mlp:add(nn.Linear(emb_dims*inp_num, out_dims)) | |
mlp:add(nn.LogSoftMax()) | |
return mlp | |
end | |
function train(mlp, criterion, ds_x, ds_y) | |
local cost = criterion:forward(mlp:forward(ds_x), ds_y) | |
mlp:zeroGradParameters() | |
mlp:backward(ds_x, criterion:backward(mlp.output, ds_y)) | |
mlp:updateParameters(0.01) | |
return cost | |
end | |
local mlp = model(10, 5, 23) | |
local criterion = nn.ClassNLLCriterion() | |
local ds_x = torch.IntTensor(10000, 5) | |
local ds_y = torch.IntTensor(10000) | |
ds_x:random(10000) | |
ds_y:random(23) | |
mlp:cuda() | |
criterion:cuda() | |
ds_x = ds_x:cuda() | |
ds_y = ds_y:cuda() | |
print('Running Torch...') | |
local start = os.time() | |
local cost | |
for i = 1, 1000 do | |
cost = train(mlp, criterion, ds_x, ds_y) | |
end | |
local stop = os.time() | |
print('Last cost: ' .. cost) | |
print('Time: ' .. (stop-start)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano | |
from theano import tensor as T | |
from theano import function | |
import numpy as np | |
import time | |
def model(x, emb_dims, num_inp, out_dims): | |
E = [] | |
for i in range(num_inp): | |
E_values = np.asarray(np.random.uniform(low=-0.1, high=0.1, | |
size=(10000, emb_dims)), | |
dtype='float32') | |
E.append(theano.shared(E_values, 'emb-%d' %i)) | |
W_values = np.asarray(np.random.uniform(low=-0.1, high=0.1, | |
size=(out_dims, emb_dims*num_inp)), | |
dtype='float32') | |
W = theano.shared(W_values, 'W') | |
z = T.concatenate([E[i][x[:,i]] for i in range(num_inp)], axis=1) | |
a = T.nnet.softmax(T.dot(z, W.T)) | |
return a, E+[W] | |
if __name__ == '__main__': | |
x = T.matrix('x', dtype='int64') | |
y = T.vector('x', dtype='int64') | |
prob, params = model(x, 10, 5, 23) | |
cost = T.mean(-T.log(prob[T.arange(y.shape[0]), y])) | |
grads = T.grad(cost, params) | |
print('Compiling function...') | |
train = function([x, y], cost, updates=[(p, p-0.01*g) | |
for p, g in zip(params, grads)]) | |
ds_x = np.random.randint(10000, size=(10000, 5)) | |
ds_y = np.random.randint(23, size=(10000)) | |
print('Running Theano...') | |
start = time.time() | |
for i in range(1000): | |
cost = train(ds_x, ds_y) | |
stop = time.time() | |
print('Last cost: %f' %cost) | |
print('Time: %f' %(stop-start)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment