Last active
August 29, 2015 14:10
-
-
Save minhlab/9f4109dcdb66b2ce6358 to your computer and use it in GitHub Desktop.
neural tensor network
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
Created on Nov 17, 2014 | |
@author: Minh Ngoc Le | |
''' | |
from pylearn2.models.mlp import Layer | |
from pylearn2.space import IndexSpace, VectorSpace | |
from pylearn2.utils import sharedX, wraps | |
import numpy | |
from theano import tensor as T | |
class NeuralTensorLayer(Layer): | |
def __init__(self, nrelations, k, max_input_labels, dim, irange=0.1, layer_name="input"): | |
super(NeuralTensorLayer, self).__init__() | |
self.layer_name = layer_name | |
self.nrelations = nrelations | |
self.dim = dim | |
self.max_input_labels = max_input_labels | |
W_value = numpy.random.uniform(-irange, irange, size=(nrelations, k, dim, dim)) | |
self.W = sharedX(W_value, 'W') | |
b_value = numpy.zeros((nrelations, k)) | |
self.b = sharedX(b_value, 'b') | |
e_value = numpy.random.uniform(-irange, irange, size=(max_input_labels, dim)) | |
self.e = sharedX(e_value, 'e') | |
V_value = numpy.random.uniform(-irange, irange, size=(nrelations, k, 2*dim)) | |
self.V = sharedX(V_value, 'V') | |
self._params = [self.e, self.W, self.b, self.V] | |
self.input_space = IndexSpace(max_input_labels, dim=3) | |
self.output_space = VectorSpace(dim=k) | |
@wraps(Layer.fprop) | |
def fprop(self, inputs): | |
e1 = self.e[inputs[:,0].flatten()] | |
W = self.W[inputs[:,1].flatten()] | |
e2 = self.e[inputs[:,2].flatten()] | |
V = self.V[inputs[:,1].flatten()] | |
b = self.b[inputs[:,1].flatten()] | |
e = T.concatenate([e1, e2], axis=1) | |
tensor = T.batched_dot(T.batched_tensordot(e1, W, axes=[[1],[2]]), e2) | |
neural = T.batched_dot(V, e) + b | |
return tensor + neural | |
@wraps(Layer.get_layer_monitoring_channels) | |
def get_layer_monitoring_channels(self, state_below=None, | |
state=None, targets=None): | |
return super(NeuralTensorLayer, self).get_layer_monitoring_channels() | |
@wraps(Layer.set_input_space) | |
def set_input_space(self, space): | |
""" | |
TODO: check | |
""" | |
pass | |
@wraps(Layer.get_weight_decay) | |
def get_weight_decay(self, coeff): | |
if isinstance(coeff, str): | |
coeff = float(coeff) | |
assert isinstance(coeff, float) or hasattr(coeff, 'dtype') | |
return coeff * (T.sqr(self.W).sum() + | |
T.sqr(self.V).sum() + | |
T.sqr(self.e).sum()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment