Created
July 29, 2018 10:45
-
-
Save minhtt159/5822474fb64b0e68f1ece9a21f45ae3b to your computer and use it in GitHub Desktop.
ISITDTU CTF - Simple RSA
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Crypto.Util.number import * | |
import random | |
flag = 'Hidden' | |
def egcd(a, b): | |
if a == 0: | |
return (b, 0, 1) | |
else: | |
g, y, x = egcd(b % a, a) | |
return (g, x - (b // a) * y, y) | |
def modinv(a, m): | |
g, x, y = egcd(a, m) | |
if g != 1: | |
#raise Exception('modular inverse does not exist') | |
print "aaa" | |
else: | |
return x % m | |
def next_prime(n): | |
num = n + 1 | |
while True: | |
if isPrime(num): | |
return num | |
num += 1 | |
p = random.randint(1<<251,1<<252) | |
i = 10 | |
p = next_prime(p) | |
p1 = next_prime(p*10) | |
p2 = next_prime(p1*10) | |
p3 = next_prime(p2*10) | |
N = p*p1*p2*p3 | |
e = 65537 | |
c = pow(bytes_to_long(flag),e,N) | |
print c | |
#153348390614662968396805701018941225929976855876673665545678808357493865670852637784454103632206407687489178974011663144922612614936251484669376715328818177626125051048699207156003563901638883835345344061093282392322541967439067639713967480376436913225761668591305793224841429397848597912616509823391639856132 | |
print N | |
#603040899191765499692105412408128039799635285914243838639458755491385487537245112353139626673905393100145421529413079339538777058510964724244525164265239307111938912323072543529589488452173312928447289267651249034509309453696972053651162310797873759227949341560295688041964008368596191262760564685226946006231 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Crypto.Util.number import * | |
from gmpy2 import * | |
c = 153348390614662968396805701018941225929976855876673665545678808357493865670852637784454103632206407687489178974011663144922612614936251484669376715328818177626125051048699207156003563901638883835345344061093282392322541967439067639713967480376436913225761668591305793224841429397848597912616509823391639856132 | |
N = 603040899191765499692105412408128039799635285914243838639458755491385487537245112353139626673905393100145421529413079339538777058510964724244525164265239307111938912323072543529589488452173312928447289267651249034509309453696972053651162310797873759227949341560295688041964008368596191262760564685226946006231 | |
brute_start = int(iroot(N/1000000,4)[0]) | |
i = 1 | |
while True: | |
p = brute_start + i | |
if N % p == 0: | |
print p | |
break | |
p = brute_start - i | |
if N % p == 0: | |
print p | |
break | |
i += 1 | |
# Took from SO | |
def egcd(a, b): | |
if a == 0: | |
return (b, 0, 1) | |
g, y, x = egcd(b%a,a) | |
return (g, x - (b//a) * y, y) | |
def modinv(a, m): | |
g, x, y = egcd(a, m) | |
if g != 1: | |
raise Exception('No modular inverse') | |
return x%m | |
print p | |
p1 = next_prime(p*10) | |
p2 = next_prime(p1*10) | |
p3 = next_prime(p2*10) | |
phi = (p-1)*(p1-1)*(p2-1)*(p3-1) | |
e = 65537 | |
d = modinv(e,phi) | |
print long_to_bytes(pow(c,d,N)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment