Skip to content

Instantly share code, notes, and snippets.

@miohtama
Created March 15, 2025 14:29
Show Gist options
  • Save miohtama/0d2b9bd692a4d69d1f79ae08ee4cce5a to your computer and use it in GitHub Desktop.
Save miohtama/0d2b9bd692a4d69d1f79ae08ee4cce5a to your computer and use it in GitHub Desktop.
@indicators.define(dependencies=[ath, ath, daily_rsi])
def signal(
close: pd.Series,
ath_delay_bars: int,
ath_window_bars: int,
ath_threshold: float,
ath_span: int,
daily_rsi_bars: int,
daily_rsi_threshold: float,
pair: TradingPairIdentifier,
dependency_resolver: IndicatorDependencyResolver
) -> pd.Series:
"""Combine ATH signal with daily RSI filter.
- We use daily RSI filter to get rid of crap pairs like FTC
"""
rsi = dependency_resolver.get_indicator_data(
"daily_rsi",
parameters={"daily_rsi_bars": daily_rsi_bars},
pair=pair,
)
# Set default RSI value so we include pairs
# without enough history
rsi = rsi.fillna(50).infer_objects(copy=False)
ath = dependency_resolver.get_indicator_data(
"ath",
parameters={
"ath_delay_bars": ath_delay_bars,
"ath_window_bars": ath_window_bars,
},
pair=pair,
)
ath_core = ath.ewm(span=ath_span).mean() - ath_threshold
# Use daily RSI as a thrash filter
# See FTC: https://tradingstrategy.ai/trading-view/binance/pancakeswap-v2/ftc-usdt
df = pd.DataFrame({
"rsi": rsi,
"ath_core": ath_core,
})
# forward-fill from daily to hourly
# SHOULD handle forward fill until the live timestamp
df["rsi"] = df["rsi"].infer_objects(copy=False).ffill()
mask = df.rsi >= daily_rsi_threshold
df['ath_thresholded'] = 0.0 # Initialize with zeros
df.loc[mask, 'ath_thresholded'] = df.loc[mask, 'ath_core'] # Copy ATH indicator values from non-masked timestamps
return df["ath_thresholded"]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment