Last active
November 15, 2019 04:14
-
-
Save mirfan899/d03bb0b064562cee54a05dd4bc48e2a6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import codecs | |
tagged_sentences = codecs.open("../data/data.txt", encoding="utf-8").readlines() | |
print(tagged_sentences[0]) | |
import ast | |
import numpy as np | |
from keras.layers import Dense, InputLayer, Embedding, Activation | |
from keras.models import Sequential | |
from keras.optimizers import Adam | |
from keras.preprocessing.sequence import pad_sequences | |
from sklearn.model_selection import train_test_split | |
def logits_to_tokens(sequences, index): | |
token_sequences = [] | |
for categorical_sequence in sequences: | |
token_sequence = [] | |
for categorical in categorical_sequence: | |
token_sequence.append(index[np.argmax(categorical)]) | |
token_sequences.append(token_sequence) | |
return token_sequences | |
def to_categorical(sequences, categories): | |
cat_sequences = [] | |
for s in sequences: | |
cats = [] | |
for item in s: | |
cats.append(np.zeros(categories)) | |
cats[-1][item] = 1.0 | |
cat_sequences.append(cats) | |
return np.array(cat_sequences) | |
# tagged_sentences = codecs.open("../data/data_lstm.txt", encoding="utf-8").readlines() | |
sentences, sentence_tags = [], [] | |
for tagged_sentence in tagged_sentences: | |
sentence, tags = zip(*ast.literal_eval(tagged_sentence)) | |
sentences.append(np.array(sentence)) | |
sentence_tags.append(np.array(tags)) | |
(train_sentences, | |
test_sentences, | |
train_tags, | |
test_tags) = train_test_split(sentences, sentence_tags, test_size=0.2) | |
words, tags = set([]), set([]) | |
for s in train_sentences: | |
for w in s: | |
words.add(w.lower()) | |
for ts in train_tags: | |
for t in ts: | |
tags.add(t) | |
word2index = {w: i + 2 for i, w in enumerate(list(words))} | |
word2index['-PAD-'] = 0 # The special value used for padding | |
word2index['-OOV-'] = 1 # The special value used for OOVs | |
tag2index = {t: i + 1 for i, t in enumerate(list(tags))} | |
tag2index['-PAD-'] = 0 # The special value used to padding | |
train_sentences_X, test_sentences_X, train_tags_y, test_tags_y = [], [], [], [] | |
for s in train_sentences: | |
s_int = [] | |
for w in s: | |
try: | |
s_int.append(word2index[w.lower()]) | |
except KeyError: | |
s_int.append(word2index['-OOV-']) | |
train_sentences_X.append(s_int) | |
for s in test_sentences: | |
s_int = [] | |
for w in s: | |
try: | |
s_int.append(word2index[w.lower()]) | |
except KeyError: | |
s_int.append(word2index['-OOV-']) | |
test_sentences_X.append(s_int) | |
for s in train_tags: | |
train_tags_y.append([tag2index[t] for t in s]) | |
for s in test_tags: | |
test_tags_y.append([tag2index[t] for t in s]) | |
MAX_LENGTH = len(max(train_sentences_X, key=len)) | |
# print(MAX_LENGTH) | |
train_sentences_X = pad_sequences(train_sentences_X, maxlen=MAX_LENGTH, padding='post') | |
test_sentences_X = pad_sequences(test_sentences_X, maxlen=MAX_LENGTH, padding='post') | |
train_tags_y = pad_sequences(train_tags_y, maxlen=MAX_LENGTH, padding='post') | |
# train_tags_y = keras.utils.to_categorical(train_tags_, len(tag2index)) | |
test_tags_y = pad_sequences(test_tags_y, maxlen=MAX_LENGTH, padding='post') | |
# test_tags_y = keras.utils.to_categorical(test_tags_, len(tag2index)) | |
model = Sequential() | |
model.add(InputLayer(input_shape=(MAX_LENGTH,))) | |
model.add(Embedding(len(word2index), 128)) | |
model.add(Dense(128)) | |
model.add(Dense(len(tag2index))) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer=Adam(0.001), | |
metrics=['accuracy']) | |
model.fit(train_sentences_X, to_categorical(train_tags_y, len(tag2index)), batch_size=32, epochs=10, validation_split=0.2) | |
model.summary() | |
print("Original data from test samples") | |
print(test_sentences[0]) | |
print(test_tags[0]) | |
scores = model.evaluate(test_sentences_X, to_categorical(test_tags_y, len(tag2index))) | |
print(f"{model.metrics_names[1]}: {scores[1] * 100}") # acc: 98.39311069478103 | |
test_samples = [ | |
test_sentences[0] | |
] | |
test_samples_X = [] | |
for s in test_samples: | |
s_int = [] | |
for w in s: | |
try: | |
s_int.append(word2index[w.lower()]) | |
except KeyError: | |
s_int.append(word2index['-OOV-']) | |
test_samples_X.append(s_int) | |
test_samples_X = pad_sequences(test_samples_X, maxlen=MAX_LENGTH, padding='post') | |
predictions = model.predict(test_samples_X) | |
print(logits_to_tokens(predictions, {i: t for t, i in tag2index.items()})) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment