Created
July 5, 2020 13:16
-
-
Save mithi/262069982ea218379940eeafe2fec00f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
"""matplot3d_examples | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1Zy_tYU5LXxJuc44AG_4GO9-2ZfVhFMnK | |
""" | |
from mpl_toolkits.mplot3d import axes3d | |
import matplotlib.pyplot as plt | |
# Commented out IPython magic to ensure Python compatibility. | |
# %matplotlib inline | |
from mpl_toolkits.mplot3d import axes3d | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection='3d') | |
# load some test data for demonstration and plot a wireframe | |
X, Y, Z = axes3d.get_test_data(0.1) | |
ax.plot_wireframe(X, Y, Z, rstride=5, cstride=5) | |
angle = 30 | |
ax.view_init(30, angle) | |
plt.draw() | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection='3d') | |
x = [1, 2, 3] | |
y = [1, 1, 1] | |
z = [7, 8, 9] | |
ax.plot(x, y, z) | |
import numpy as np | |
# Fixing random state for reproducibility | |
np.random.seed(19680801) | |
def randrange(n, vmin, vmax): | |
''' | |
Helper function to make an array of random numbers having shape (n, ) | |
with each number distributed Uniform(vmin, vmax). | |
''' | |
return (vmax - vmin)*np.random.rand(n) + vmin | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection='3d') | |
n = 100 | |
# For each set of style and range settings, plot n random points in the box | |
# defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. | |
for m, zlow, zhigh in [('o', -50, -25), ('^', -30, -5)]: | |
xs = randrange(n, 23, 32) | |
ys = randrange(n, 0, 100) | |
zs = randrange(n, zlow, zhigh) | |
ax.scatter(xs, ys, zs, marker=m) | |
angle = 0 | |
ax.view_init(30, angle) | |
ax.set_xlabel('X Label') | |
ax.set_ylabel('Y Label') | |
ax.set_zlabel('Z Label') | |
plt.show() | |
import matplotlib as mpl | |
from mpl_toolkits.mplot3d import Axes3D | |
import numpy as np | |
import matplotlib.pyplot as plt | |
mpl.rcParams['legend.fontsize'] = 10 | |
fig = plt.figure() | |
ax = fig.gca(projection='3d') | |
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) | |
z = np.linspace(-2, 2, 100) | |
r = z**2 + 1 | |
x = r * np.sin(theta) | |
y = r * np.cos(theta) | |
ax.plot(x, y, z, label='parametric curve') | |
ax.legend() | |
plt.show() | |
# https://jakevdp.github.io/PythonDataScienceHandbook/04.12-three-dimensional-plotting.html | |
ax = plt.axes(projection='3d') | |
# Data for a three-dimensional line | |
zline = np.linspace(0, 15, 1000) | |
xline = np.sin(zline) | |
yline = np.cos(zline) | |
ax.plot3D(x, y, z, 'red', marker = 'o') | |
# Data for three-dimensional scattered points | |
zdata = 15 * np.random.random(100) | |
xdata = np.sin(zdata) + 0.1 * np.random.randn(100) | |
ydata = np.cos(zdata) + 0.1 * np.random.randn(100) | |
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens', s = 300); | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment