Last active
April 20, 2020 19:43
-
-
Save mj2266/ee7adde29d2a849c0b6aa751e39750e7 to your computer and use it in GitHub Desktop.
A simple RSA implementation in Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
620031587 | |
Net-Centric Computing Assignment | |
Part A - RSA Encryption | |
''' | |
from __future__ import division | |
import random | |
''' | |
Euclid's algorithm for determining the greatest common divisor | |
Use iteration to make it faster for larger integers | |
''' | |
def gcd(a, b): | |
while b != 0: | |
a, b = b, a % b | |
return a | |
''' | |
d can be calculated using formula : d = (phi*i + 1)/e | |
where i is integer starting from 1 | |
and we find integer value for d iteratively | |
''' | |
def multiplicative_inverse(e, phi): | |
d = None | |
i = 1 | |
exit = False | |
while not exit: | |
temp1 = phi*i +1 | |
d = float(temp1/e) | |
d_int = int(d) | |
i += 1 | |
if(d_int == d): | |
exit=True | |
return int(d) | |
''' | |
Tests to see if a number is prime. | |
''' | |
def is_prime(num): | |
if num == 2: | |
return True | |
if num < 2 or num % 2 == 0: | |
return False | |
for n in xrange(3, int(num**0.5)+2, 2): | |
if num % n == 0: | |
return False | |
return True | |
def generate_keypair(p, q): | |
if not (is_prime(p) and is_prime(q)): | |
raise ValueError('Both numbers must be prime.') | |
elif p == q: | |
raise ValueError('p and q cannot be equal') | |
#n = pq | |
n = p * q | |
#Phi is the totient of n | |
phi = (p-1) * (q-1) | |
#Choose an integer e such that e and phi(n) are coprime | |
e = random.randrange(1, phi) | |
#Use Euclid's Algorithm to verify that e and phi(n) are comprime | |
g = gcd(e, phi) | |
while g != 1: | |
e = random.randrange(1, phi) | |
g = gcd(e, phi) | |
#Use Extended Euclid's Algorithm to generate the private key | |
d = multiplicative_inverse(e, phi) | |
#Return public and private keypair | |
#Public key is (e, n) and private key is (d, n) | |
return ((e, n), (d, n)) | |
def encrypt(pk, plaintext): | |
#Unpack the key into it's components | |
key, n = pk | |
#Convert each letter in the plaintext to numbers based on the character using a^b mod m | |
cipher = [(ord(char) ** key) % n for char in plaintext] | |
#Return the array of bytes | |
return cipher | |
def decrypt(pk, ciphertext): | |
#Unpack the key into its components | |
key, n = pk | |
#Generate the plaintext based on the ciphertext and key using a^b mod m | |
plain = [chr((char ** key) % n) for char in ciphertext] | |
#Return the array of bytes as a string | |
return ''.join(plain) | |
if __name__ == '__main__': | |
''' | |
Detect if the script is being run directly by the user | |
''' | |
print "RSA Encrypter/ Decrypter" | |
p = int(raw_input("Enter a prime number (17, 19, 23, etc): ")) | |
q = int(raw_input("Enter another prime number (Not one you entered above): ")) | |
print "Generating your public/private keypairs now . . ." | |
public, private = generate_keypair(p, q) | |
print "Your public key is ", public ," and your private key is ", private | |
message = raw_input("Enter a message to encrypt with your private key: ") | |
encrypted_msg = encrypt(private, message) | |
print "Your encrypted message is: " | |
print ''.join(map(lambda x: str(x), encrypted_msg)) | |
print "Decrypting message with public key ", public ," . . ." | |
print "Your message is:" | |
print decrypt(public, encrypted_msg) |
you are welcome @Bharghav-Baddam
@mj2266 yes please I'm interested of it I would be thankful for you
Also please I'm looking for another help from you I want to make it as client server, where client send hi and server response
@balasmeh you can contact me here https://www.linkedin.com/in/manjyotsingh-nanra-6a4999152/
does this one work on python3. Thanks
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This wasnt my code, i forked it from someone and fixed few issues. any way let me know what the issues are please @stackola thanks