Created
April 10, 2014 08:27
-
-
Save mja/10356174 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(MCMCglmm) | |
library(mvtnorm) | |
# separate covariances for each sex | |
Rf <- matrix(c(1, .4, .4, 1), nrow=2) | |
Rm <- matrix(c(1, 0, 0, 1), nrow=2) | |
# Simulate correlated phenotypes | |
females <- data.frame(rmvnorm(100, mean=c(0, 0), sigma=Rf)) | |
males <- data.frame(rmvnorm(100, mean=c(0, 0), sigma=Rm)) | |
names(females) <- c('x1', 'x2') | |
names(males) <- c('x1', 'x2') | |
females$sex <- 'f' | |
males$sex <- 'm' | |
# create single data frame | |
dat <- rbind(females, males) | |
dat$sex<-as.factor(dat$sex) | |
# prior R has two elements for each sex. | |
prior <- list(R=list(R1=list(V=diag(2), nu=3), | |
R2=list(V=diag(2), nu=3))) | |
# use at.level to match each row with the correct residual structure | |
m1 <- MCMCglmm(cbind(x1, x2) ~ trait-1 + trait:sex, | |
rcov=~us(trait:at.level(sex, 'f')):units + | |
us(trait:at.level(sex, 'm')):units, | |
prior=prior, | |
family=rep('gaussian', times=2), | |
data=dat, | |
verbose=FALSE) | |
summary(m1) | |
## Iterations = 3001:12991 | |
## Thinning interval = 10 | |
## Sample size = 1000 | |
## | |
## DIC: 1150.074 | |
## | |
## R-structure: ~us(trait:at.level(sex, "f")):units | |
## | |
## post.mean l-95% CI u-95% CI eff.samp | |
## x1:at.level(sex, "f"):x1:at.level(sex, "f").units 0.8796 0.6646 1.1311 1000 | |
## x2:at.level(sex, "f"):x1:at.level(sex, "f").units 0.5034 0.2926 0.7336 1068 | |
## x1:at.level(sex, "f"):x2:at.level(sex, "f").units 0.5034 0.2926 0.7336 1068 | |
## x2:at.level(sex, "f"):x2:at.level(sex, "f").units 1.2701 0.8957 1.6189 1390 | |
## | |
## ~us(trait:at.level(sex, "m")):units | |
## | |
## post.mean l-95% CI u-95% CI eff.samp | |
## x1:at.level(sex, "m"):x1:at.level(sex, "m").units 1.0809 0.81450 1.3813 1004 | |
## x2:at.level(sex, "m"):x1:at.level(sex, "m").units 0.1664 -0.06324 0.3826 1000 | |
## x1:at.level(sex, "m"):x2:at.level(sex, "m").units 0.1664 -0.06324 0.3826 1000 | |
## x2:at.level(sex, "m"):x2:at.level(sex, "m").units 1.2258 0.91329 1.5702 1100 | |
## | |
## Location effects: cbind(x1, x2) ~ trait - 1 + trait:sex | |
## | |
## post.mean l-95% CI u-95% CI eff.samp pMCMC | |
## traitx1 -0.072394 -0.243784 0.109528 1000 0.422 | |
## traitx2 0.006103 -0.197400 0.209340 1000 0.980 | |
## traitx1:sexm 0.188854 -0.081251 0.463722 1095 0.210 | |
## traitx2:sexm 0.173623 -0.172538 0.457807 1000 0.292 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment