Last active
March 28, 2020 11:14
-
-
Save mjamroz/451dddbc3ccf02a4d71be0aec9e822cf to your computer and use it in GitHub Desktop.
custom stats for "binary" classification where we have more than 2 classes and want to binary classify between one and rest
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from mxnet import metric, nd | |
class BinarySelectedStatistics(metric._BinaryClassificationMetrics): | |
def __init__(self): | |
super().__init__() | |
self.positive = 1 # default | |
self.num_inst = 0 | |
self.sum_metric = 0.0 | |
def set_positive_index(self, index): | |
self.positive = index | |
@property | |
def score(self): | |
return self.sum_metric/self.num_inst | |
def reset(self): | |
self.reset_stats() | |
self.num_inst = 0 | |
self.sum_metric = 0.0 | |
def update(self, label, outputs): | |
label, outputs = metric.check_label_shapes(label, outputs, True) | |
for label, pred_label in zip(label, outputs): | |
pred_label = nd.argmax(pred_label, axis=1) | |
pred_label = pred_label.asnumpy().astype('int32') | |
label = label.asnumpy().astype('int32') | |
label = label.flat | |
pred_label = pred_label.flat | |
# import numpy as np | |
# junk_label = np.array([1,1,0,2,3,3,3,1,1,1]) | |
# pred_label = np.array([1,0,2,2,2,1,1,2,3,0]) | |
# # TP: 1, TN: 3, FP: 2, FN: 4 | |
# label=junk_label | |
metric.check_label_shapes(label, pred_label) | |
label_true = (label == self.positive) | |
true_positives = (pred_label == self.positive).sum(where=label_true) | |
false_positives = (pred_label == self.positive).sum(where=~label_true) | |
false_negatives = (pred_label != self.positive).sum(where=label_true) | |
true_negatives = (pred_label != self.positive).sum(where=~label_true) | |
self.true_positives += true_positives | |
self.false_positives += false_positives | |
self.false_negatives += false_negatives | |
self.true_negatives += true_negatives | |
self.global_true_positives += true_positives | |
self.global_false_positives += false_positives | |
self.global_false_negatives += false_negatives | |
self.global_true_negatives += true_negatives | |
self.num_inst += len(pred_label) | |
self.sum_metric += (pred_label == label).sum() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment