Created
July 1, 2014 01:56
-
-
Save mjbommar/ae68c0a5c811b2deaf96 to your computer and use it in GitHub Desktop.
Fuzzy sentence matching in Python - Bommarito Consulting, LLC: http://bommaritollc.com/2014/06/advanced-approximate-sentence-matching-python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Imports | |
import nltk.corpus | |
import nltk.tokenize.punkt | |
import nltk.stem.snowball | |
from nltk.corpus import wordnet | |
import string | |
# Get default English stopwords and extend with punctuation | |
stopwords = nltk.corpus.stopwords.words('english') | |
stopwords.extend(string.punctuation) | |
stopwords.append('') | |
def get_wordnet_pos(pos_tag): | |
if pos_tag[1].startswith('J'): | |
return (pos_tag[0], wordnet.ADJ) | |
elif pos_tag[1].startswith('V'): | |
return (pos_tag[0], wordnet.VERB) | |
elif pos_tag[1].startswith('N'): | |
return (pos_tag[0], wordnet.NOUN) | |
elif pos_tag[1].startswith('R'): | |
return (pos_tag[0], wordnet.ADV) | |
else: | |
return (pos_tag[0], wordnet.NOUN) | |
# Create tokenizer and stemmer | |
tokenizer = nltk.tokenize.punkt.PunktWordTokenizer() | |
lemmatizer = nltk.stem.wordnet.WordNetLemmatizer() | |
def is_ci_lemma_stopword_set_match(a, b, threshold=0.5): | |
"""Check if a and b are matches.""" | |
pos_a = map(get_wordnet_pos, nltk.pos_tag(tokenizer.tokenize(a))) | |
pos_b = map(get_wordnet_pos, nltk.pos_tag(tokenizer.tokenize(b))) | |
lemmae_a = [lemmatizer.lemmatize(token.lower().strip(string.punctuation), pos) for token, pos in pos_a \ | |
if pos == wordnet.NOUN and token.lower().strip(string.punctuation) not in stopwords] | |
lemmae_b = [lemmatizer.lemmatize(token.lower().strip(string.punctuation), pos) for token, pos in pos_b \ | |
if pos == wordnet.NOUN and token.lower().strip(string.punctuation) not in stopwords] | |
# Calculate Jaccard similarity | |
ratio = len(set(lemmae_a).intersection(lemmae_b)) / float(len(set(lemmae_a).union(lemmae_b))) | |
return (ratio >= threshold) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment