Created
May 3, 2017 18:32
-
-
Save mjdietzx/881cd3e0f8836121226a04efb9e2ae18 to your computer and use it in GitHub Desktop.
pyt🔥rch implementation of ResNeXt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.autograd import Variable | |
import torch.nn as nn | |
class Bottleneck(nn.Module): | |
cardinality = 32 # the size of the set of transformations | |
def __init__(self, nb_channels_in, nb_channels, nb_channels_out, stride=1): | |
super().__init__() | |
self.conv1 = nn.Conv2d(nb_channels_in, nb_channels, kernel_size=1) | |
self.bn1 = nn.BatchNorm2d(nb_channels) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size=3, stride=stride, padding=1, groups=self.cardinality) | |
self.bn2 = nn.BatchNorm2d(nb_channels) | |
self.conv3 = nn.Conv2d(nb_channels, nb_channels_out, kernel_size=1) | |
self.bn3 = nn.BatchNorm2d(nb_channels_out) | |
if nb_channels_in != nb_channels_out or stride != 1: | |
self.project = nn.Conv2d(nb_channels_in, nb_channels_out, kernel_size=1, stride=stride) | |
else: | |
self.project = None | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if callable(self.project): | |
residual = self.project(residual) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNeXt(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# conv1 | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
# conv2 | |
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
conv2 = [] | |
for i in range(2): | |
nb_channels_in = 64 if i == 0 else 256 | |
conv2.append(Bottleneck(nb_channels_in, 128, 256)) | |
self.conv2 = nn.Sequential(*conv2) | |
# conv3 | |
conv3 = [] | |
for i in range(2): | |
if i == 0: | |
nb_channels_in = 256 | |
stride = 2 | |
else: | |
nb_channels_in = 512 | |
stride = 1 | |
conv3.append(Bottleneck(nb_channels_in, 256, 512, stride=stride)) | |
self.conv3 = nn.Sequential(*conv3) | |
# conv4 | |
conv4 = [] | |
for i in range(2): | |
if i == 0: | |
nb_channels_in = 512 | |
stride = 2 | |
else: | |
nb_channels_in = 1024 | |
stride = 1 | |
conv4.append(Bottleneck(nb_channels_in, 512, 1024, stride=stride)) | |
self.conv4 = nn.Sequential(*conv4) | |
# conv5 | |
conv5 = [] | |
for i in range(2): | |
if i == 0: | |
nb_channels_in = 1024 | |
stride = 2 | |
else: | |
nb_channels_in = 2048 | |
stride = 1 | |
conv5.append(Bottleneck(nb_channels_in, 1024, 2048, stride=stride)) | |
self.conv5 = nn.Sequential(*conv5) | |
self.avg_pool = nn.AvgPool2d(7) | |
self.fc = nn.Linear(2048, 10) | |
def forward(self, x): | |
# conv1 | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
# conv2 | |
x = self.max_pool(x) | |
for block in self.conv2: | |
x = block(x) | |
# conv3 | |
for block in self.conv3: | |
x = block(x) | |
# conv4 | |
for block in self.conv4: | |
x = block(x) | |
# conv5 | |
for block in self.conv5: | |
x = block(x) | |
x = self.avg_pool(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
return x | |
def main(): | |
model = ResNeXt() | |
print(model) | |
inputs = torch.randn(1, 3, 224, 224) | |
y = model.forward(Variable(inputs)) | |
print(y) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Awesome!