Created
May 10, 2019 20:21
-
-
Save mjdominus/239b8c7022e40928e08e653162154335 to your computer and use it in GitHub Desktop.
Calculate topological sortings of a graph
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
class Graph(): | |
def __init__(self, edge_list): | |
self.E = set(edge_list) | |
self.V = range(self._n_vertices()) | |
def _n_vertices(self): | |
max = 0 | |
for edge in self.E: | |
a, b = edge | |
if a > max: max = a | |
if b > max: max = b | |
return max+1 | |
def sources(self): | |
not_sources = set() | |
for e in self.E: | |
source, target = e | |
not_sources.add(target) | |
return set(self.V) - not_sources | |
def without_vertex(self, v): | |
new_graph = Graph({ e for e in self.E if e[0] != v and e[1] != v }) | |
new_graph.V = set(self.V) - {v} | |
return new_graph | |
def topological_sortings(self): | |
if len(self.V) == 0: # no vertices | |
yield [] | |
return | |
# otherwise there might be some source vertices | |
for source in self.sources(): | |
g = self.without_vertex(source) | |
for ts in g.topological_sortings(): | |
yield [source] + ts | |
return | |
def number_of_topological_sortings(graph): | |
if len(graph.V) == 0: return 1 | |
return sum([ graph.without_vertex(source).number_of_topological_sortings() | |
for source in graph.sources() ]) | |
G4 = Graph({(0, 1), (2, 3), (0,4), (4,3)}) | |
for ts in G4.topological_sortings(): | |
print(ts) | |
print("Count", G4.number_of_topological_sortings()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment