Last active
July 5, 2018 03:00
-
-
Save mkdika/d58deea4632e18bb9bd8c5423350f7da to your computer and use it in GitHub Desktop.
Fibonacci Naive Recursive vs Memoization Recursive in Java
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Fibonacci Naive Recursive vs Memoization Recursive vs Bottom-Up | |
* | |
* This class is to compare the performance result of simple common recursive | |
* use case "The Fibonacci". One is use Naive Recursive algorithm, second is use | |
* Dynamic programming Memoization algorithm, and bottom-up. | |
* | |
* The function is to calculate Fibonacci position N, then return the value. | |
* | |
* @author Maikel Chandika ([email protected]) | |
*/ | |
public class FibonacciNaiveVsMemoization { | |
static int[] memory; | |
public static void main(String[] args) { | |
int n = 45; | |
System.out.println("N = " + n); | |
System.out.println("Calculate with Fibonacci Naive Recursive."); | |
long t1 = System.nanoTime(); | |
System.out.println(fib(n)); | |
System.out.println("Done in " + (System.nanoTime()-t1)+" nano secs."); | |
System.out.println(); | |
System.out.println("Calculate with Fibonacci Memoization."); | |
memory = new int[n+1]; | |
long t2 = System.nanoTime(); | |
System.out.println(fibM(n)); | |
System.out.println("Done in " + (System.nanoTime()-t2)+" nano secs."); | |
System.out.println(); | |
System.out.println("Calculate with Fibonacci Bottom-up."); | |
long t3 = System.nanoTime(); | |
System.out.println(fibB(n)); | |
System.out.println("Done in " + (System.nanoTime()-t3)+" nano secs."); | |
} | |
static int fib(int x) { | |
if (x == 1 || x == 2) return 1; | |
return fib(x - 1) + fib(x - 2); | |
} | |
static int fibM(int x) { | |
if (memory[x] != 0) return memory[x]; | |
if (x == 1 || x == 2) return 1; | |
int n = fibM(x - 1) + fibM(x - 2); | |
memory[x] = n; | |
return n; | |
} | |
static int fibB(int x) { | |
if (x == 1 || x == 2) return 1; | |
memory = new int[x+1]; | |
memory[1] = 1; | |
memory[2] = 1; | |
for (int i=3;i<=x;i++) memory[i] = memory[i-1]+memory[i-2]; | |
return memory[x]; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment