Last active
June 18, 2018 09:13
-
-
Save mkocabas/2f3c561abd925ff7cae0308ced0a5aa2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, absolute_import | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.models as models | |
class FPN(nn.Module): | |
def __init__(self, | |
backbone='resnet50', | |
feature_size=256, | |
kernel_size=3, | |
use_bias=True): | |
super(FPN, self).__init__() | |
self.fs = feature_size | |
self.ks = kernel_size | |
self.backbone_c5_dim = 2048 | |
self.backbone_dims = [self.backbone_c5_dim, | |
self.backbone_c5_dim / 2, | |
self.backbone_c5_dim / 4, | |
self.backbone_c5_dim / 8] | |
print('Building %s model'%backbone) | |
self.backbone = models.__dict__[backbone](pretrained=True) | |
self.lateral = nn.ModuleList() | |
# Lateral connections of FPN | |
for d in self.backbone_dims: | |
self.lateral.append( | |
nn.Conv2d(d, self.fs, kernel_size=1, stride=1, padding=0) | |
) | |
# Top connections of FPN | |
self.top = nn.ModuleList() | |
for _ in self.backbone_dims: | |
self.top.append( | |
nn.Conv2d(self.fs, self.fs, kernel_size=3, stride=1, padding=1) | |
) | |
self.relu = nn.ReLU() | |
self._initialize(self.top, bias=use_bias) | |
self._initialize(self.lateral, bias=use_bias) | |
def _initialize(self, modules, bias=True): | |
for param in modules: | |
if isinstance(param, nn.Conv2d): | |
nn.init.xavier_normal(param.weight) | |
if bias: | |
nn.init.constant(param.bias, 0.0) | |
def _upsample(self, x, y): | |
_, _, H, W = y.size() | |
return F.upsample(x, size=(H, W), mode='bilinear') | |
def forward(self, input): | |
x = self.backbone.conv1(input) | |
x = self.backbone.bn1(x) | |
x = self.backbone.relu(x) | |
c1 = self.backbone.maxpool(x) | |
c2 = self.backbone.layer1(c1) | |
c3 = self.backbone.layer2(c2) | |
c4 = self.backbone.layer3(c3) | |
c5 = self.backbone.layer4(c4) | |
c = [c5, c4, c3, c2] # These are the intermediate outputs of backbone => stride 2^n | |
# FPN P-layers | |
p = [] | |
p_up = None | |
for i in range(4): | |
_p = self.lateral[i](c[i]) | |
_p = self.relu(_p) | |
if i > 0: | |
_p = p_up + _p | |
if i < len(c) - 1: | |
p_up = self._upsample(_p, c[i + 1]) | |
_p = self.top[i](_p) | |
p.append(_p) | |
return p | |
def fpn(weights, **kwargs): | |
model = FPN(**kwargs) | |
if weights: | |
model.load_state_dict(torch.load(weights)['state_dict']) | |
return model | |
if __name__ == '__main__': | |
model = FPN() | |
x = torch.autograd.Variable(torch.Tensor(4, 3, 256, 256)) | |
out = model(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment