Created
September 21, 2016 00:30
-
-
Save mlzxy/b9cc27f22957c4e6eaa8e19b9ca5a4d5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <vector> | |
#include "caffe/layers/deconv_layer.hpp" | |
namespace caffe { | |
template <typename Dtype> | |
void DeconvolutionLayer<Dtype>::compute_output_shape() { | |
const int* kernel_shape_data = this->kernel_shape_.cpu_data(); | |
const int* stride_data = this->stride_.cpu_data(); | |
const int* pad_data = this->pad_.cpu_data(); | |
const int* dilation_data = this->dilation_.cpu_data(); | |
this->output_shape_.clear(); | |
for (int i = 0; i < this->num_spatial_axes_; ++i) { | |
// i + 1 to skip channel axis | |
const int input_dim = this->input_shape(i + 1); | |
const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1; | |
const int output_dim = stride_data[i] * (input_dim - 1) | |
+ kernel_extent - 2 * pad_data[i]; | |
this->output_shape_.push_back(output_dim); | |
} | |
} | |
template <typename Dtype> | |
void DeconvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, | |
const vector<Blob<Dtype>*>& top) { | |
const Dtype* weight = this->blobs_[0]->cpu_data(); | |
for (int i = 0; i < bottom.size(); ++i) { | |
const Dtype* bottom_data = bottom[i]->cpu_data(); | |
Dtype* top_data = top[i]->mutable_cpu_data(); | |
for (int n = 0; n < this->num_; ++n) { | |
this->backward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight, | |
top_data + n * this->top_dim_); | |
if (this->bias_term_) { | |
const Dtype* bias = this->blobs_[1]->cpu_data(); | |
this->forward_cpu_bias(top_data + n * this->top_dim_, bias); | |
} | |
} | |
} | |
} | |
template <typename Dtype> | |
void DeconvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, | |
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { | |
const Dtype* weight = this->blobs_[0]->cpu_data(); | |
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff(); | |
for (int i = 0; i < top.size(); ++i) { | |
const Dtype* top_diff = top[i]->cpu_diff(); | |
const Dtype* bottom_data = bottom[i]->cpu_data(); | |
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff(); | |
// Bias gradient, if necessary. | |
if (this->bias_term_ && this->param_propagate_down_[1]) { | |
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff(); | |
for (int n = 0; n < this->num_; ++n) { | |
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_); | |
} | |
} | |
if (this->param_propagate_down_[0] || propagate_down[i]) { | |
for (int n = 0; n < this->num_; ++n) { | |
// Gradient w.r.t. weight. Note that we will accumulate diffs. | |
if (this->param_propagate_down_[0]) { | |
this->weight_cpu_gemm(top_diff + n * this->top_dim_, | |
bottom_data + n * this->bottom_dim_, weight_diff); | |
} | |
// Gradient w.r.t. bottom data, if necessary, reusing the column buffer | |
// we might have just computed above. | |
if (propagate_down[i]) { | |
this->forward_cpu_gemm(top_diff + n * this->top_dim_, weight, | |
bottom_diff + n * this->bottom_dim_, | |
this->param_propagate_down_[0]); | |
} | |
} | |
} | |
} | |
} | |
#ifdef CPU_ONLY | |
STUB_GPU(DeconvolutionLayer); | |
#endif | |
INSTANTIATE_CLASS(DeconvolutionLayer); | |
REGISTER_LAYER_CLASS(Deconvolution); | |
} // namespace caffe |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment