Skip to content

Instantly share code, notes, and snippets.

@mlzxy
Created September 21, 2016 00:30
Show Gist options
  • Save mlzxy/b9cc27f22957c4e6eaa8e19b9ca5a4d5 to your computer and use it in GitHub Desktop.
Save mlzxy/b9cc27f22957c4e6eaa8e19b9ca5a4d5 to your computer and use it in GitHub Desktop.
#include <vector>
#include "caffe/layers/deconv_layer.hpp"
namespace caffe {
template <typename Dtype>
void DeconvolutionLayer<Dtype>::compute_output_shape() {
const int* kernel_shape_data = this->kernel_shape_.cpu_data();
const int* stride_data = this->stride_.cpu_data();
const int* pad_data = this->pad_.cpu_data();
const int* dilation_data = this->dilation_.cpu_data();
this->output_shape_.clear();
for (int i = 0; i < this->num_spatial_axes_; ++i) {
// i + 1 to skip channel axis
const int input_dim = this->input_shape(i + 1);
const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1;
const int output_dim = stride_data[i] * (input_dim - 1)
+ kernel_extent - 2 * pad_data[i];
this->output_shape_.push_back(output_dim);
}
}
template <typename Dtype>
void DeconvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[0]->cpu_data();
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
this->backward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
}
template <typename Dtype>
void DeconvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n) {
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// Gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
this->weight_cpu_gemm(top_diff + n * this->top_dim_,
bottom_data + n * this->bottom_dim_, weight_diff);
}
// Gradient w.r.t. bottom data, if necessary, reusing the column buffer
// we might have just computed above.
if (propagate_down[i]) {
this->forward_cpu_gemm(top_diff + n * this->top_dim_, weight,
bottom_diff + n * this->bottom_dim_,
this->param_propagate_down_[0]);
}
}
}
}
}
#ifdef CPU_ONLY
STUB_GPU(DeconvolutionLayer);
#endif
INSTANTIATE_CLASS(DeconvolutionLayer);
REGISTER_LAYER_CLASS(Deconvolution);
} // namespace caffe
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment