Created
November 25, 2016 19:28
-
-
Save mlzxy/d8c843863873b2d14eb22a263cfef847 to your computer and use it in GitHub Desktop.
gan.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from util import * | |
from tf_util import * | |
from matplotlib import pyplot as plt | |
from tensorflow.examples.tutorials.mnist import input_data | |
# %matplotlib inline | |
""" | |
Parameter Sections | |
""" | |
model_name = 'basic_gan_mnist' | |
log = Log(model_name) | |
model_path = make_model_path(model_name) | |
images_path = join(data__, 'mnist_data/gen_gan_images') | |
mkdir(images_path) | |
n_step = 20000 | |
test_freq = 100 | |
batch_size = 32*3 | |
z_dim_list = [8, 8, 1] | |
z_dim = list_prod(z_dim_list) | |
lr = 0.0002 | |
def g_net(z): | |
# 8, 8, 1 | |
h = tf_reshape_for_conv(z, z_dim_list) | |
h = tf_conv2d(h, 128, k_w=3, k_h=3, name="g_conv_1", activation=tf_relu, bn=True) | |
h = tf_deconv2d(h, [14, 14, 64], k_w=7, k_h=7, | |
name="g_deconv2d_2", activation=tf_relu, bn=True) | |
h = tf_deconv2d(h, [20, 20, 32], k_w=7, k_h=7, | |
name="g_deconv2d_3", activation=tf_relu, bn=True) | |
h = tf_deconv2d(h, [25, 25, 16], k_w=6, k_h=6, | |
name="g_deconv2d_4", activation=tf_relu, bn=True) | |
h = tf_deconv2d(h, [28, 28, 8], k_w=4, k_h=4, | |
name="g_deconv2d_5", activation=tf_relu, bn=True) | |
h = tf_conv2d(h, 1, k_w=1, k_h=1, name="g_conv2d_6", activation=tf_sigmoid) | |
return h | |
def d_net(input_var): | |
h = tf_conv2d(input_var, 128, k_w=3, k_h=3, name="d_conv_1", activation=tf_leaky_relu(0.2), bn=True) | |
h = tf_max_pool2d(h, d_h=2, d_w=2, name="pool_1") # max pooling 创建分类abstraction, 看来是成功的关键所在呀。。。 | |
h = tf_dropout(h, 0.5) | |
h = tf_conv2d(h, 64, k_w=3, k_h=3, name="d_conv_2", activation=tf_leaky_relu(0.2), bn=True) | |
h = tf_max_pool2d(h, d_h=2, d_w=2, name="pool_2") | |
h = tf_dropout(h, 0.5) | |
h = tf_conv2d(h, 32, k_w=3, k_h=3, name="d_conv_3", activation=tf_leaky_relu(0.2), bn=True) | |
h = tf_max_pool2d(h, d_h=2, d_w=2, name="pool_3") | |
h = tf_conv2d(h, 16, k_w=3, k_h=3, name="d_conv_4", activation=tf_leaky_relu(0.2), bn=True) | |
h = tf_flatten_for_dense(h) | |
h = tf_dropout(h, 0.5) | |
h = tf_dense(h, 1, name="dense_1") | |
return h, tf_sigmoid(h) | |
def test_fun(model=None, n_iter=0, losses=[]): | |
plot_loss(losses, title=model_name+"_loss", | |
save_to=join(images_path, '{0}_loss.png'.format(n_iter))) | |
gen_images = model.generate_data(batch_size=16) | |
plt.figure(figsize=(12, 12)) | |
dim = (8, 8) | |
for i, image in enumerate(gen_images): | |
plt.subplot(dim[0], dim[1], i + 1) | |
plt.imshow(image.reshape((28, 28))) | |
plt.axis('off') | |
plt.tight_layout() | |
plt.savefig(join(images_path, '{0}_gen.png'.format(n_iter))) | |
plt.show() | |
with tf.Session() as session: | |
log('Loading Data') | |
mnist = input_data.read_data_sets(join(data__, 'mnist_data'), one_hot=True) | |
log('Finished!') | |
log('Building Graph') | |
gan = GanModel(input_dim=(28, 28, 1), z_dim=z_dim, | |
g_net=g_net, | |
d_net=d_net, | |
optimizer=lambda: tf.train.AdamOptimizer(lr, beta1=0.5), | |
name=model_name, | |
session=session, | |
next_batch=mnist.train.next_batch, reuse=False, | |
batch_size=batch_size, log=log, test_freq=test_freq, test_fun=test_fun) | |
log('Finished!') | |
loss_list = gan.train(log=None) | |
ok() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment