Skip to content

Instantly share code, notes, and snippets.

@mmahbub
Last active November 26, 2020 21:12
Show Gist options
  • Save mmahbub/1bb75ea6a273d7207616e48a581e35a8 to your computer and use it in GitHub Desktop.
Save mmahbub/1bb75ea6a273d7207616e48a581e35a8 to your computer and use it in GitHub Desktop.
def plot_confusion_matrix(cm,
target_names,
title,
cmap=None,
normalize=True):
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm,
normalize = False,
target_names = sorted(set(df['author'])),
title = "Confusion Matrix")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment