Last active
November 27, 2020 17:22
-
-
Save mmahbub/ce462fedf974e8a12ccc062e002af4b4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
df_test = pd.DataFrame(test_ds, columns=['text', 'author']) | |
# make a unique list of authors | |
auth = sorted(set(df['author'])) | |
# make a dict of possible signatures where key is the labeled entity and value is a list of possible signatures | |
auth_dict = {} | |
auth_dict[auth[0]] = ['ben', 'benjamin', 'rogers', 'benjamin rogers','ben rogers','br'] | |
auth_dict[auth[1]] = ['chris', 'dorland','chris dorland','cd'] | |
auth_dict[auth[2]] = ['drew','fossum','drew fossum','df'] | |
auth_dict[auth[3]] = ['jeffrey','shankman','jeffrey shankman','js'] | |
auth_dict[auth[4]] = ['kevin','presto','kevin presto','kp'] | |
auth_dict[auth[5]] = ['kim','kimberly','watson','kimberly watson','kim watson','kw'] | |
auth_dict[auth[6]] = ['lynn','blair','lynn blair','lb'] | |
auth_dict[auth[7]] = ['mark','haedicke','mark haedicke','mh'] | |
auth_dict[auth[8]] = ['mike','michelle','cash','michelle cash','mike cash','mc'] | |
auth_dict[auth[9]] = ['phillip','allen','phillip allen'] | |
def untargeted_signature_attack(auth_dict,text, target = ''): | |
if target is not '': | |
target = auth_dict[target][0] | |
max_name_len = max([len(x) for x in auth_dict.keys()]) | |
body = text[-max_name_len:] | |
body_l = body.lower() | |
for author in auth: | |
found = False | |
for sig in sorted(auth_dict[author], key=lambda k: len(k), reverse=True): | |
if sig in body_l: | |
found = True | |
startidx = body_l.find(sig) | |
endidx = startidx + len(sig) | |
text = text[:-max_name_len] + body.replace(body[startidx:endidx], target) | |
break | |
if found: | |
break | |
# return pd.Series([text, found]) | |
return text | |
df_test[['perturbed_text', 'modified']] = df_test['text'].apply(lambda text:untargeted_signature_attack(auth_dict,text)) | |
print('Percentage of perturbation: {:.2f}%\n'.format((len(df_test[df_test['modified'] == True])/len(df_test))*100)) | |
for a in auth: | |
print('Modified data percentage for ' + a + ' = {:.2f}%\n'.format((len(df_test[(df_test['author']==a) & (df_test['modified']==True)])/len(df_test[df_test['author']==a]))*100)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment