Last active
August 3, 2020 19:53
-
-
Save mmgaggle/15e938a49909f1101f0093e17294546f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
_CUDA_COMPAT_STATUS=CUDA Driver UNAVAILABLE (cuInit(0) returned 100) | |
NVIDIA_PYTORCH_VERSION=19.05 | |
MOFED_VERSION=4.4-1.0.0 | |
COCOAPI_VERSION=2.0+nv0.3.1 | |
CUDNN_VERSION=7.6.0.64 | |
HOSTNAME=ssd | |
DATADIR=/ocs-ml-data/coco | |
NVIDIA_REQUIRE_CUDA=cuda>=5.0 | |
KUBERNETES_PORT=tcp://172.30.0.1:443 | |
KUBERNETES_PORT_443_TCP_PORT=443 | |
TERM=xterm | |
NSIGHT_SYSTEMS_VERSION=2019.3.1 | |
CUBLAS_VERSION=10.2.0.163 | |
LIBRARY_PATH=/usr/local/cuda/lib64/stubs: | |
KUBERNETES_SERVICE_PORT=443 | |
KUBERNETES_SERVICE_HOST=172.30.0.1 | |
NEXP=1 | |
LC_ALL=C.UTF-8 | |
PYTHONIOENCODING=utf-8 | |
LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 | |
NVIDIA_VISIBLE_DEVICES=all | |
ENV=/etc/shinit | |
_CUDA_COMPAT_PATH=/usr/local/cuda/compat | |
CUDA_CACHE_DISABLE=1 | |
NVIDIA_DRIVER_CAPABILITIES=compute,utility | |
TRT_VERSION=5.1.5.0 | |
CUDA_DRIVER_VERSION=418.67 | |
NVIDIA_BUILD_ID=6411784 | |
PATH=/opt/conda/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin | |
PWD=/workspace/single_stage_detector | |
PYTORCH_VERSION=1.1.0a0+828a6a3 | |
PYTORCH_BUILD_VERSION=1.1.0a0+828a6a3 | |
CUDA_VERSION=10.1.163 | |
OMPI_MCA_btl_vader_single_copy_mechanism=none | |
SHLVL=1 | |
HOME=/root | |
DALI_VERSION=0.9.1 | |
KUBERNETES_PORT_443_TCP_PROTO=tcp | |
KUBERNETES_SERVICE_PORT_HTTPS=443 | |
DALI_BUILD=719215 | |
OPENMPI_VERSION=3.1.3 | |
NCCL_VERSION=2.4.6 | |
INSLURM=0 | |
BASH_ENV=/etc/bash.bashrc | |
LOGDIR=/ocs-ml-data/logs | |
NSS_SDB_USE_CACHE=no | |
OPENCV_FOR_THREADS_NUM=1 | |
OMP_NUM_THREADS=1 | |
PYTORCH_BUILD_NUMBER=0 | |
KUBERNETES_PORT_443_TCP_ADDR=172.30.0.1 | |
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443 | |
_=/usr/bin/printenv | |
Run vars: id 31478 gpus 4 mparams | |
STARTING TIMING RUN AT 2020-08-03 06:32:03 PM | |
+ NUMEPOCHS=80 | |
running benchmark | |
+ echo 'running benchmark' | |
+ export DATASET_DIR=/data/coco2017 | |
+ DATASET_DIR=/data/coco2017 | |
+ export TORCH_MODEL_ZOO=/data/torchvision | |
+ TORCH_MODEL_ZOO=/data/torchvision | |
+ python3 -m bind_launch --nsockets_per_node 1 --ncores_per_socket 16 --nproc_per_node 4 train.py --use-fp16 --nhwc --pad-input --jit --delay-allreduce --opt-loss --epochs 80 --warmup-factor 0 --no-save --threshold=0.23 --data /data/coco2017 --evaluation 120000 160000 180000 200000 220000 240000 260000 280000 --batch-size 120 --eval-batch-size 160 --warmup 650 --lr 2.92e-3 --wd 1.6e-4 --use-nvjpeg --use-roi-decode | |
:::MLL 1596479525.114 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
:::MLL 1596479525.114 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
:::MLL 1596479525.116 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
BN group: 1 | |
BN group: 1 | |
BN group: 1 | |
:::MLL 1596479525.120 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
BN group: 1 | |
0 Using seed = 3396354582 | |
1 Using seed = 3396354583 | |
3 Using seed = 3396354585 | |
2 Using seed = 3396354584 | |
:::MLL 1596479529.327 max_samples: {"value": 1, "metadata": {"file": "utils.py", "lineno": 465}} | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
87306240it [00:02, 37778057.99it/s] | |
87306240it [00:02, 38328804.28it/s] | |
87306240it [00:02, 39160723.67it/s] | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
Delaying allreduces to the end of backward() | |
:::MLL 1596479532.474 model_bn_span: {"value": 120, "metadata": {"file": "train.py", "lineno": 480}} | |
:::MLL 1596479532.475 global_batch_size: {"value": 480, "metadata": {"file": "train.py", "lineno": 481}} | |
:::MLL 1596479532.486 opt_base_learning_rate: {"value": 0.045, "metadata": {"file": "train.py", "lineno": 511}} | |
:::MLL 1596479532.486 opt_weight_decay: {"value": 0.00016, "metadata": {"file": "train.py", "lineno": 513}} | |
:::MLL 1596479532.486 opt_learning_rate_warmup_steps: {"value": 650, "metadata": {"file": "train.py", "lineno": 516}} | |
:::MLL 1596479532.487 opt_learning_rate_warmup_factor: {"value": 0, "metadata": {"file": "train.py", "lineno": 518}} | |
87306240it [00:00, 96442733.39it/s] | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
epoch nbatch loss | |
:::MLL 1596479540.646 init_stop: {"value": null, "metadata": {"file": "train.py", "lineno": 604}} | |
:::MLL 1596479540.647 run_start: {"value": null, "metadata": {"file": "train.py", "lineno": 610}} | |
loading annotations into memory... | |
loading annotations into memory... | |
loading annotations into memory... | |
loading annotations into memory... | |
Done (t=0.66s) | |
creating index... | |
Done (t=0.66s) | |
creating index... | |
Done (t=0.66s) | |
creating index... | |
Done (t=0.66s) | |
creating index... | |
time_check a: 1596479542.946700573 | |
time_check b: 1596479547.190808773 | |
:::MLL 1596479548.002 block_start: {"value": null, "metadata": {"first_epoch_num": 1, "epoch_count": 32.74606450292497, "file": "train.py", "lineno": 669}} | |
:::MLL 1596479548.003 epoch_start: {"value": null, "metadata": {"epoch_num": 1, "file": "train.py", "lineno": 673}} | |
Iteration: 0, Loss function: 23.010, Average Loss: 0.023, avg. samples / sec: 36.97 | |
Iteration: 20, Loss function: 20.652, Average Loss: 0.450, avg. samples / sec: 1945.46 | |
Iteration: 40, Loss function: 20.099, Average Loss: 0.849, avg. samples / sec: 2148.80 | |
Iteration: 60, Loss function: 16.421, Average Loss: 1.207, avg. samples / sec: 2166.96 | |
Iteration: 80, Loss function: 11.545, Average Loss: 1.445, avg. samples / sec: 2160.84 | |
Iteration: 100, Loss function: 10.326, Average Loss: 1.621, avg. samples / sec: 2168.89 | |
Iteration: 120, Loss function: 9.471, Average Loss: 1.782, avg. samples / sec: 2163.36 | |
Iteration: 140, Loss function: 8.934, Average Loss: 1.929, avg. samples / sec: 2173.41 | |
Iteration: 160, Loss function: 8.868, Average Loss: 2.068, avg. samples / sec: 2181.67 | |
Iteration: 180, Loss function: 8.540, Average Loss: 2.198, avg. samples / sec: 2176.20 | |
Iteration: 200, Loss function: 8.401, Average Loss: 2.322, avg. samples / sec: 2179.32 | |
Iteration: 220, Loss function: 8.327, Average Loss: 2.442, avg. samples / sec: 2183.55 | |
Iteration: 240, Loss function: 8.279, Average Loss: 2.555, avg. samples / sec: 2179.25 | |
:::MLL 1596479603.693 epoch_stop: {"value": null, "metadata": {"epoch_num": 1, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479603.694 epoch_start: {"value": null, "metadata": {"epoch_num": 2, "file": "train.py", "lineno": 673}} | |
Iteration: 260, Loss function: 7.940, Average Loss: 2.665, avg. samples / sec: 2172.77 | |
Iteration: 280, Loss function: 7.550, Average Loss: 2.768, avg. samples / sec: 2180.30 | |
Iteration: 300, Loss function: 7.217, Average Loss: 2.864, avg. samples / sec: 2172.69 | |
Iteration: 320, Loss function: 8.221, Average Loss: 2.959, avg. samples / sec: 2176.64 | |
Iteration: 340, Loss function: 7.486, Average Loss: 3.060, avg. samples / sec: 2169.93 | |
Iteration: 360, Loss function: 7.224, Average Loss: 3.147, avg. samples / sec: 2179.19 | |
Iteration: 380, Loss function: 7.490, Average Loss: 3.228, avg. samples / sec: 2170.93 | |
Iteration: 400, Loss function: 7.088, Average Loss: 3.307, avg. samples / sec: 2166.55 | |
Iteration: 420, Loss function: 7.320, Average Loss: 3.387, avg. samples / sec: 2172.39 | |
Iteration: 440, Loss function: 6.961, Average Loss: 3.461, avg. samples / sec: 2168.27 | |
Iteration: 460, Loss function: 6.971, Average Loss: 3.530, avg. samples / sec: 2172.12 | |
Iteration: 480, Loss function: 6.588, Average Loss: 3.596, avg. samples / sec: 2171.24 | |
:::MLL 1596479657.594 epoch_stop: {"value": null, "metadata": {"epoch_num": 2, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479657.595 epoch_start: {"value": null, "metadata": {"epoch_num": 3, "file": "train.py", "lineno": 673}} | |
Iteration: 500, Loss function: 7.012, Average Loss: 3.661, avg. samples / sec: 2159.67 | |
Iteration: 520, Loss function: 6.650, Average Loss: 3.722, avg. samples / sec: 2171.54 | |
Iteration: 540, Loss function: 6.946, Average Loss: 3.780, avg. samples / sec: 2163.70 | |
Iteration: 560, Loss function: 6.757, Average Loss: 3.838, avg. samples / sec: 2168.25 | |
Iteration: 580, Loss function: 6.344, Average Loss: 3.893, avg. samples / sec: 2169.27 | |
Iteration: 600, Loss function: 6.131, Average Loss: 3.942, avg. samples / sec: 2158.56 | |
Iteration: 620, Loss function: 6.786, Average Loss: 3.991, avg. samples / sec: 2165.71 | |
Iteration: 640, Loss function: 6.616, Average Loss: 4.039, avg. samples / sec: 2165.73 | |
Iteration: 660, Loss function: 6.276, Average Loss: 4.083, avg. samples / sec: 2166.54 | |
Iteration: 680, Loss function: 6.039, Average Loss: 4.122, avg. samples / sec: 2162.49 | |
Iteration: 700, Loss function: 6.108, Average Loss: 4.161, avg. samples / sec: 2167.98 | |
Iteration: 720, Loss function: 6.383, Average Loss: 4.203, avg. samples / sec: 2168.30 | |
:::MLL 1596479711.679 epoch_stop: {"value": null, "metadata": {"epoch_num": 3, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479711.679 epoch_start: {"value": null, "metadata": {"epoch_num": 4, "file": "train.py", "lineno": 673}} | |
Iteration: 740, Loss function: 6.107, Average Loss: 4.240, avg. samples / sec: 2158.10 | |
Iteration: 760, Loss function: 5.782, Average Loss: 4.272, avg. samples / sec: 2157.74 | |
Iteration: 780, Loss function: 5.819, Average Loss: 4.302, avg. samples / sec: 2163.34 | |
Iteration: 800, Loss function: 5.520, Average Loss: 4.331, avg. samples / sec: 2159.15 | |
Iteration: 820, Loss function: 5.654, Average Loss: 4.360, avg. samples / sec: 2160.89 | |
Iteration: 840, Loss function: 6.002, Average Loss: 4.387, avg. samples / sec: 2156.31 | |
Iteration: 860, Loss function: 5.636, Average Loss: 4.412, avg. samples / sec: 2160.81 | |
Iteration: 880, Loss function: 5.528, Average Loss: 4.436, avg. samples / sec: 2154.79 | |
Iteration: 900, Loss function: 5.592, Average Loss: 4.459, avg. samples / sec: 2157.04 | |
Iteration: 920, Loss function: 5.529, Average Loss: 4.480, avg. samples / sec: 2157.44 | |
Iteration: 940, Loss function: 5.364, Average Loss: 4.501, avg. samples / sec: 2162.06 | |
Iteration: 960, Loss function: 5.633, Average Loss: 4.523, avg. samples / sec: 2157.86 | |
:::MLL 1596479766.171 epoch_stop: {"value": null, "metadata": {"epoch_num": 4, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479766.172 epoch_start: {"value": null, "metadata": {"epoch_num": 5, "file": "train.py", "lineno": 673}} | |
Iteration: 980, Loss function: 5.336, Average Loss: 4.543, avg. samples / sec: 2149.41 | |
Iteration: 1000, Loss function: 5.518, Average Loss: 4.561, avg. samples / sec: 2161.57 | |
Iteration: 1020, Loss function: 5.197, Average Loss: 4.577, avg. samples / sec: 2153.19 | |
Iteration: 1040, Loss function: 5.422, Average Loss: 4.593, avg. samples / sec: 2156.21 | |
Iteration: 1060, Loss function: 5.351, Average Loss: 4.607, avg. samples / sec: 2157.13 | |
Iteration: 1080, Loss function: 5.352, Average Loss: 4.621, avg. samples / sec: 2157.61 | |
Iteration: 1100, Loss function: 5.505, Average Loss: 4.634, avg. samples / sec: 2159.93 | |
Iteration: 1120, Loss function: 5.268, Average Loss: 4.646, avg. samples / sec: 2155.72 | |
Iteration: 1140, Loss function: 5.115, Average Loss: 4.659, avg. samples / sec: 2159.03 | |
Iteration: 1160, Loss function: 5.466, Average Loss: 4.671, avg. samples / sec: 2161.11 | |
Iteration: 1180, Loss function: 5.333, Average Loss: 4.682, avg. samples / sec: 2157.11 | |
Iteration: 1200, Loss function: 5.325, Average Loss: 4.692, avg. samples / sec: 2163.03 | |
Iteration: 1220, Loss function: 5.086, Average Loss: 4.702, avg. samples / sec: 2166.94 | |
:::MLL 1596479820.429 epoch_stop: {"value": null, "metadata": {"epoch_num": 5, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479820.430 epoch_start: {"value": null, "metadata": {"epoch_num": 6, "file": "train.py", "lineno": 673}} | |
Iteration: 1240, Loss function: 4.831, Average Loss: 4.711, avg. samples / sec: 2160.51 | |
Iteration: 1260, Loss function: 4.857, Average Loss: 4.718, avg. samples / sec: 2157.49 | |
Iteration: 1280, Loss function: 5.504, Average Loss: 4.726, avg. samples / sec: 2153.82 | |
Iteration: 1300, Loss function: 5.172, Average Loss: 4.732, avg. samples / sec: 2160.78 | |
Iteration: 1320, Loss function: 4.870, Average Loss: 4.739, avg. samples / sec: 2159.87 | |
Iteration: 1340, Loss function: 5.227, Average Loss: 4.745, avg. samples / sec: 2162.08 | |
Iteration: 1360, Loss function: 5.337, Average Loss: 4.750, avg. samples / sec: 2156.42 | |
Iteration: 1380, Loss function: 5.051, Average Loss: 4.756, avg. samples / sec: 2162.77 | |
Iteration: 1400, Loss function: 4.671, Average Loss: 4.763, avg. samples / sec: 2162.73 | |
Iteration: 1420, Loss function: 5.093, Average Loss: 4.767, avg. samples / sec: 2158.78 | |
Iteration: 1440, Loss function: 5.055, Average Loss: 4.772, avg. samples / sec: 2156.42 | |
Iteration: 1460, Loss function: 4.851, Average Loss: 4.776, avg. samples / sec: 2160.70 | |
:::MLL 1596479874.678 epoch_stop: {"value": null, "metadata": {"epoch_num": 6, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479874.679 epoch_start: {"value": null, "metadata": {"epoch_num": 7, "file": "train.py", "lineno": 673}} | |
Iteration: 1480, Loss function: 4.876, Average Loss: 4.780, avg. samples / sec: 2148.47 | |
Iteration: 1500, Loss function: 5.011, Average Loss: 4.783, avg. samples / sec: 2157.60 | |
Iteration: 1520, Loss function: 4.778, Average Loss: 4.784, avg. samples / sec: 2160.48 | |
Iteration: 1540, Loss function: 4.694, Average Loss: 4.785, avg. samples / sec: 2158.56 | |
Iteration: 1560, Loss function: 5.101, Average Loss: 4.788, avg. samples / sec: 2159.53 | |
Iteration: 1580, Loss function: 4.700, Average Loss: 4.790, avg. samples / sec: 2153.68 | |
Iteration: 1600, Loss function: 4.906, Average Loss: 4.790, avg. samples / sec: 2161.36 | |
Iteration: 1620, Loss function: 4.894, Average Loss: 4.792, avg. samples / sec: 2159.54 | |
Iteration: 1640, Loss function: 5.072, Average Loss: 4.794, avg. samples / sec: 2161.06 | |
Iteration: 1660, Loss function: 4.849, Average Loss: 4.795, avg. samples / sec: 2153.77 | |
Iteration: 1680, Loss function: 4.719, Average Loss: 4.795, avg. samples / sec: 2159.25 | |
Iteration: 1700, Loss function: 4.939, Average Loss: 4.797, avg. samples / sec: 2156.35 | |
:::MLL 1596479929.179 epoch_stop: {"value": null, "metadata": {"epoch_num": 7, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479929.180 epoch_start: {"value": null, "metadata": {"epoch_num": 8, "file": "train.py", "lineno": 673}} | |
Iteration: 1720, Loss function: 4.625, Average Loss: 4.797, avg. samples / sec: 2153.24 | |
Iteration: 1740, Loss function: 4.727, Average Loss: 4.798, avg. samples / sec: 2163.10 | |
Iteration: 1760, Loss function: 5.001, Average Loss: 4.798, avg. samples / sec: 2159.38 | |
Iteration: 1780, Loss function: 4.592, Average Loss: 4.798, avg. samples / sec: 2158.09 | |
Iteration: 1800, Loss function: 4.534, Average Loss: 4.798, avg. samples / sec: 2152.26 | |
Iteration: 1820, Loss function: 4.808, Average Loss: 4.798, avg. samples / sec: 2156.88 | |
Iteration: 1840, Loss function: 4.612, Average Loss: 4.797, avg. samples / sec: 2156.58 | |
Iteration: 1860, Loss function: 4.575, Average Loss: 4.796, avg. samples / sec: 2152.50 | |
Iteration: 1880, Loss function: 4.678, Average Loss: 4.795, avg. samples / sec: 2162.25 | |
Iteration: 1900, Loss function: 4.733, Average Loss: 4.793, avg. samples / sec: 2156.32 | |
Iteration: 1920, Loss function: 5.201, Average Loss: 4.792, avg. samples / sec: 2158.86 | |
Iteration: 1940, Loss function: 4.881, Average Loss: 4.792, avg. samples / sec: 2163.83 | |
:::MLL 1596479983.451 epoch_stop: {"value": null, "metadata": {"epoch_num": 8, "file": "train.py", "lineno": 819}} | |
:::MLL 1596479983.451 epoch_start: {"value": null, "metadata": {"epoch_num": 9, "file": "train.py", "lineno": 673}} | |
Iteration: 1960, Loss function: 4.298, Average Loss: 4.788, avg. samples / sec: 2157.71 | |
Iteration: 1980, Loss function: 4.536, Average Loss: 4.786, avg. samples / sec: 2161.86 | |
Iteration: 2000, Loss function: 4.323, Average Loss: 4.783, avg. samples / sec: 2154.97 | |
Iteration: 2020, Loss function: 4.922, Average Loss: 4.780, avg. samples / sec: 2160.21 | |
Iteration: 2040, Loss function: 4.491, Average Loss: 4.777, avg. samples / sec: 2148.43 | |
Iteration: 2060, Loss function: 4.379, Average Loss: 4.774, avg. samples / sec: 2161.12 | |
Iteration: 2080, Loss function: 4.787, Average Loss: 4.772, avg. samples / sec: 2164.71 | |
Iteration: 2100, Loss function: 4.691, Average Loss: 4.770, avg. samples / sec: 2154.80 | |
Iteration: 2120, Loss function: 4.536, Average Loss: 4.768, avg. samples / sec: 2162.26 | |
Iteration: 2140, Loss function: 4.672, Average Loss: 4.765, avg. samples / sec: 2157.94 | |
Iteration: 2160, Loss function: 4.340, Average Loss: 4.763, avg. samples / sec: 2157.02 | |
Iteration: 2180, Loss function: 4.891, Average Loss: 4.758, avg. samples / sec: 2156.81 | |
:::MLL 1596480037.724 epoch_stop: {"value": null, "metadata": {"epoch_num": 9, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480037.725 epoch_start: {"value": null, "metadata": {"epoch_num": 10, "file": "train.py", "lineno": 673}} | |
Iteration: 2200, Loss function: 4.810, Average Loss: 4.756, avg. samples / sec: 2156.05 | |
Iteration: 2220, Loss function: 4.256, Average Loss: 4.751, avg. samples / sec: 2154.81 | |
Iteration: 2240, Loss function: 4.285, Average Loss: 4.746, avg. samples / sec: 2159.92 | |
Iteration: 2260, Loss function: 4.480, Average Loss: 4.743, avg. samples / sec: 2161.12 | |
Iteration: 2280, Loss function: 4.617, Average Loss: 4.739, avg. samples / sec: 2153.14 | |
Iteration: 2300, Loss function: 4.374, Average Loss: 4.734, avg. samples / sec: 2166.04 | |
Iteration: 2320, Loss function: 4.318, Average Loss: 4.732, avg. samples / sec: 2154.29 | |
Iteration: 2340, Loss function: 4.299, Average Loss: 4.729, avg. samples / sec: 2152.77 | |
Iteration: 2360, Loss function: 4.602, Average Loss: 4.726, avg. samples / sec: 2160.52 | |
Iteration: 2380, Loss function: 4.740, Average Loss: 4.725, avg. samples / sec: 2154.42 | |
Iteration: 2400, Loss function: 4.620, Average Loss: 4.721, avg. samples / sec: 2154.57 | |
Iteration: 2420, Loss function: 4.693, Average Loss: 4.718, avg. samples / sec: 2159.82 | |
Iteration: 2440, Loss function: 4.801, Average Loss: 4.714, avg. samples / sec: 2160.95 | |
:::MLL 1596480092.241 epoch_stop: {"value": null, "metadata": {"epoch_num": 10, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480092.241 epoch_start: {"value": null, "metadata": {"epoch_num": 11, "file": "train.py", "lineno": 673}} | |
Iteration: 2460, Loss function: 4.196, Average Loss: 4.709, avg. samples / sec: 2153.58 | |
Iteration: 2480, Loss function: 4.854, Average Loss: 4.704, avg. samples / sec: 2162.23 | |
Iteration: 2500, Loss function: 4.304, Average Loss: 4.699, avg. samples / sec: 2160.07 | |
Iteration: 2520, Loss function: 4.555, Average Loss: 4.695, avg. samples / sec: 2162.03 | |
Iteration: 2540, Loss function: 4.763, Average Loss: 4.691, avg. samples / sec: 2157.23 | |
Iteration: 2560, Loss function: 4.508, Average Loss: 4.687, avg. samples / sec: 2159.38 | |
Iteration: 2580, Loss function: 4.671, Average Loss: 4.683, avg. samples / sec: 2160.13 | |
Iteration: 2600, Loss function: 4.279, Average Loss: 4.679, avg. samples / sec: 2154.50 | |
Iteration: 2620, Loss function: 4.454, Average Loss: 4.676, avg. samples / sec: 2151.77 | |
Iteration: 2640, Loss function: 4.323, Average Loss: 4.671, avg. samples / sec: 2162.91 | |
Iteration: 2660, Loss function: 4.361, Average Loss: 4.667, avg. samples / sec: 2158.13 | |
Iteration: 2680, Loss function: 4.550, Average Loss: 4.662, avg. samples / sec: 2160.94 | |
:::MLL 1596480146.490 epoch_stop: {"value": null, "metadata": {"epoch_num": 11, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480146.491 epoch_start: {"value": null, "metadata": {"epoch_num": 12, "file": "train.py", "lineno": 673}} | |
Iteration: 2700, Loss function: 4.522, Average Loss: 4.658, avg. samples / sec: 2150.43 | |
Iteration: 2720, Loss function: 4.346, Average Loss: 4.652, avg. samples / sec: 2162.68 | |
Iteration: 2740, Loss function: 4.682, Average Loss: 4.648, avg. samples / sec: 2151.40 | |
Iteration: 2760, Loss function: 4.268, Average Loss: 4.643, avg. samples / sec: 2164.40 | |
Iteration: 2780, Loss function: 4.516, Average Loss: 4.640, avg. samples / sec: 2152.09 | |
Iteration: 2800, Loss function: 4.504, Average Loss: 4.635, avg. samples / sec: 2159.90 | |
Iteration: 2820, Loss function: 4.559, Average Loss: 4.631, avg. samples / sec: 2161.87 | |
Iteration: 2840, Loss function: 4.125, Average Loss: 4.626, avg. samples / sec: 2159.50 | |
Iteration: 2860, Loss function: 5.070, Average Loss: 4.622, avg. samples / sec: 2161.84 | |
Iteration: 2880, Loss function: 4.319, Average Loss: 4.617, avg. samples / sec: 2160.47 | |
Iteration: 2900, Loss function: 4.284, Average Loss: 4.611, avg. samples / sec: 2160.57 | |
Iteration: 2920, Loss function: 4.509, Average Loss: 4.606, avg. samples / sec: 2163.98 | |
:::MLL 1596480200.738 epoch_stop: {"value": null, "metadata": {"epoch_num": 12, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480200.739 epoch_start: {"value": null, "metadata": {"epoch_num": 13, "file": "train.py", "lineno": 673}} | |
Iteration: 2940, Loss function: 4.515, Average Loss: 4.601, avg. samples / sec: 2155.98 | |
Iteration: 2960, Loss function: 4.319, Average Loss: 4.597, avg. samples / sec: 2159.77 | |
Iteration: 2980, Loss function: 4.125, Average Loss: 4.591, avg. samples / sec: 2160.71 | |
Iteration: 3000, Loss function: 4.384, Average Loss: 4.586, avg. samples / sec: 2157.09 | |
Iteration: 3020, Loss function: 4.211, Average Loss: 4.581, avg. samples / sec: 2162.21 | |
Iteration: 3040, Loss function: 4.143, Average Loss: 4.577, avg. samples / sec: 2157.44 | |
Iteration: 3060, Loss function: 4.280, Average Loss: 4.572, avg. samples / sec: 2164.27 | |
Iteration: 3080, Loss function: 4.305, Average Loss: 4.567, avg. samples / sec: 2159.48 | |
Iteration: 3100, Loss function: 4.473, Average Loss: 4.564, avg. samples / sec: 2160.43 | |
Iteration: 3120, Loss function: 4.506, Average Loss: 4.559, avg. samples / sec: 2162.44 | |
Iteration: 3140, Loss function: 4.397, Average Loss: 4.556, avg. samples / sec: 2158.02 | |
Iteration: 3160, Loss function: 4.209, Average Loss: 4.551, avg. samples / sec: 2158.04 | |
:::MLL 1596480254.977 epoch_stop: {"value": null, "metadata": {"epoch_num": 13, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480254.978 epoch_start: {"value": null, "metadata": {"epoch_num": 14, "file": "train.py", "lineno": 673}} | |
Iteration: 3180, Loss function: 4.485, Average Loss: 4.547, avg. samples / sec: 2151.44 | |
Iteration: 3200, Loss function: 4.214, Average Loss: 4.542, avg. samples / sec: 2158.85 | |
Iteration: 3220, Loss function: 4.349, Average Loss: 4.538, avg. samples / sec: 2159.43 | |
Iteration: 3240, Loss function: 4.151, Average Loss: 4.533, avg. samples / sec: 2157.45 | |
Iteration: 3260, Loss function: 4.180, Average Loss: 4.528, avg. samples / sec: 2160.78 | |
Iteration: 3280, Loss function: 4.311, Average Loss: 4.523, avg. samples / sec: 2157.96 | |
Iteration: 3300, Loss function: 4.241, Average Loss: 4.518, avg. samples / sec: 2159.85 | |
Iteration: 3320, Loss function: 4.148, Average Loss: 4.513, avg. samples / sec: 2160.49 | |
Iteration: 3340, Loss function: 4.148, Average Loss: 4.509, avg. samples / sec: 2163.97 | |
Iteration: 3360, Loss function: 4.567, Average Loss: 4.504, avg. samples / sec: 2160.32 | |
Iteration: 3380, Loss function: 4.336, Average Loss: 4.500, avg. samples / sec: 2157.33 | |
Iteration: 3400, Loss function: 4.112, Average Loss: 4.496, avg. samples / sec: 2154.55 | |
Iteration: 3420, Loss function: 4.218, Average Loss: 4.491, avg. samples / sec: 2159.75 | |
:::MLL 1596480309.456 epoch_stop: {"value": null, "metadata": {"epoch_num": 14, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480309.457 epoch_start: {"value": null, "metadata": {"epoch_num": 15, "file": "train.py", "lineno": 673}} | |
Iteration: 3440, Loss function: 4.156, Average Loss: 4.487, avg. samples / sec: 2149.22 | |
Iteration: 3460, Loss function: 4.125, Average Loss: 4.482, avg. samples / sec: 2163.94 | |
Iteration: 3480, Loss function: 4.278, Average Loss: 4.479, avg. samples / sec: 2155.79 | |
Iteration: 3500, Loss function: 4.079, Average Loss: 4.473, avg. samples / sec: 2165.56 | |
Iteration: 3520, Loss function: 4.325, Average Loss: 4.470, avg. samples / sec: 2155.84 | |
Iteration: 3540, Loss function: 4.139, Average Loss: 4.466, avg. samples / sec: 2161.33 | |
Iteration: 3560, Loss function: 4.194, Average Loss: 4.461, avg. samples / sec: 2164.46 | |
Iteration: 3580, Loss function: 4.327, Average Loss: 4.456, avg. samples / sec: 2164.18 | |
Iteration: 3600, Loss function: 4.453, Average Loss: 4.453, avg. samples / sec: 2160.17 | |
Iteration: 3620, Loss function: 4.233, Average Loss: 4.448, avg. samples / sec: 2155.53 | |
Iteration: 3640, Loss function: 4.040, Average Loss: 4.443, avg. samples / sec: 2158.90 | |
Iteration: 3660, Loss function: 4.036, Average Loss: 4.439, avg. samples / sec: 2164.56 | |
:::MLL 1596480363.680 epoch_stop: {"value": null, "metadata": {"epoch_num": 15, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480363.680 epoch_start: {"value": null, "metadata": {"epoch_num": 16, "file": "train.py", "lineno": 673}} | |
Iteration: 3680, Loss function: 4.446, Average Loss: 4.436, avg. samples / sec: 2148.28 | |
Iteration: 3700, Loss function: 4.312, Average Loss: 4.431, avg. samples / sec: 2157.80 | |
Iteration: 3720, Loss function: 3.956, Average Loss: 4.427, avg. samples / sec: 2156.19 | |
Iteration: 3740, Loss function: 3.985, Average Loss: 4.422, avg. samples / sec: 2154.17 | |
Iteration: 3760, Loss function: 4.115, Average Loss: 4.418, avg. samples / sec: 2163.16 | |
Iteration: 3780, Loss function: 4.360, Average Loss: 4.412, avg. samples / sec: 2164.31 | |
Iteration: 3800, Loss function: 4.727, Average Loss: 4.408, avg. samples / sec: 2152.51 | |
Iteration: 3820, Loss function: 4.422, Average Loss: 4.403, avg. samples / sec: 2156.92 | |
Iteration: 3840, Loss function: 4.487, Average Loss: 4.400, avg. samples / sec: 2161.71 | |
Iteration: 3860, Loss function: 4.122, Average Loss: 4.396, avg. samples / sec: 2160.30 | |
Iteration: 3880, Loss function: 4.062, Average Loss: 4.392, avg. samples / sec: 2156.46 | |
Iteration: 3900, Loss function: 3.979, Average Loss: 4.388, avg. samples / sec: 2158.01 | |
:::MLL 1596480417.966 epoch_stop: {"value": null, "metadata": {"epoch_num": 16, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480417.966 epoch_start: {"value": null, "metadata": {"epoch_num": 17, "file": "train.py", "lineno": 673}} | |
Iteration: 3920, Loss function: 4.211, Average Loss: 4.384, avg. samples / sec: 2154.66 | |
Iteration: 3940, Loss function: 4.120, Average Loss: 4.379, avg. samples / sec: 2160.69 | |
Iteration: 3960, Loss function: 4.477, Average Loss: 4.376, avg. samples / sec: 2154.10 | |
Iteration: 3980, Loss function: 4.019, Average Loss: 4.371, avg. samples / sec: 2157.67 | |
Iteration: 4000, Loss function: 4.471, Average Loss: 4.367, avg. samples / sec: 2155.74 | |
Iteration: 4020, Loss function: 4.173, Average Loss: 4.363, avg. samples / sec: 2162.27 | |
Iteration: 4040, Loss function: 3.977, Average Loss: 4.359, avg. samples / sec: 2156.91 | |
Iteration: 4060, Loss function: 4.361, Average Loss: 4.355, avg. samples / sec: 2166.89 | |
Iteration: 4080, Loss function: 4.232, Average Loss: 4.351, avg. samples / sec: 2159.08 | |
Iteration: 4100, Loss function: 4.065, Average Loss: 4.349, avg. samples / sec: 2157.47 | |
Iteration: 4120, Loss function: 4.260, Average Loss: 4.346, avg. samples / sec: 2163.69 | |
Iteration: 4140, Loss function: 4.014, Average Loss: 4.342, avg. samples / sec: 2159.07 | |
:::MLL 1596480472.438 epoch_stop: {"value": null, "metadata": {"epoch_num": 17, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480472.439 epoch_start: {"value": null, "metadata": {"epoch_num": 18, "file": "train.py", "lineno": 673}} | |
Iteration: 4160, Loss function: 4.299, Average Loss: 4.339, avg. samples / sec: 2151.55 | |
Iteration: 4180, Loss function: 4.331, Average Loss: 4.334, avg. samples / sec: 2161.40 | |
Iteration: 4200, Loss function: 4.325, Average Loss: 4.329, avg. samples / sec: 2163.85 | |
Iteration: 4220, Loss function: 4.086, Average Loss: 4.326, avg. samples / sec: 2161.62 | |
Iteration: 4240, Loss function: 4.109, Average Loss: 4.323, avg. samples / sec: 2155.26 | |
Iteration: 4260, Loss function: 4.171, Average Loss: 4.318, avg. samples / sec: 2158.94 | |
Iteration: 4280, Loss function: 4.273, Average Loss: 4.314, avg. samples / sec: 2156.38 | |
Iteration: 4300, Loss function: 3.779, Average Loss: 4.313, avg. samples / sec: 2164.21 | |
Iteration: 4320, Loss function: 4.061, Average Loss: 4.309, avg. samples / sec: 2163.39 | |
Iteration: 4340, Loss function: 4.082, Average Loss: 4.305, avg. samples / sec: 2158.84 | |
Iteration: 4360, Loss function: 4.290, Average Loss: 4.303, avg. samples / sec: 2157.31 | |
Iteration: 4380, Loss function: 3.997, Average Loss: 4.300, avg. samples / sec: 2157.65 | |
:::MLL 1596480526.671 epoch_stop: {"value": null, "metadata": {"epoch_num": 18, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480526.672 epoch_start: {"value": null, "metadata": {"epoch_num": 19, "file": "train.py", "lineno": 673}} | |
Iteration: 4400, Loss function: 3.992, Average Loss: 4.296, avg. samples / sec: 2156.02 | |
Iteration: 4420, Loss function: 4.210, Average Loss: 4.293, avg. samples / sec: 2162.95 | |
Iteration: 4440, Loss function: 4.340, Average Loss: 4.288, avg. samples / sec: 2163.16 | |
Iteration: 4460, Loss function: 4.250, Average Loss: 4.285, avg. samples / sec: 2162.34 | |
Iteration: 4480, Loss function: 4.166, Average Loss: 4.281, avg. samples / sec: 2159.10 | |
Iteration: 4500, Loss function: 4.089, Average Loss: 4.279, avg. samples / sec: 2164.97 | |
Iteration: 4520, Loss function: 4.005, Average Loss: 4.275, avg. samples / sec: 2161.36 | |
Iteration: 4540, Loss function: 4.003, Average Loss: 4.272, avg. samples / sec: 2164.87 | |
Iteration: 4560, Loss function: 4.550, Average Loss: 4.269, avg. samples / sec: 2161.34 | |
Iteration: 4580, Loss function: 4.222, Average Loss: 4.265, avg. samples / sec: 2155.01 | |
Iteration: 4600, Loss function: 4.467, Average Loss: 4.262, avg. samples / sec: 2158.27 | |
Iteration: 4620, Loss function: 3.980, Average Loss: 4.259, avg. samples / sec: 2157.51 | |
Iteration: 4640, Loss function: 4.084, Average Loss: 4.257, avg. samples / sec: 2161.24 | |
:::MLL 1596480580.883 epoch_stop: {"value": null, "metadata": {"epoch_num": 19, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480580.883 epoch_start: {"value": null, "metadata": {"epoch_num": 20, "file": "train.py", "lineno": 673}} | |
Iteration: 4660, Loss function: 4.123, Average Loss: 4.252, avg. samples / sec: 2154.55 | |
Iteration: 4680, Loss function: 3.903, Average Loss: 4.249, avg. samples / sec: 2151.80 | |
Iteration: 4700, Loss function: 4.265, Average Loss: 4.245, avg. samples / sec: 2158.35 | |
Iteration: 4720, Loss function: 4.026, Average Loss: 4.242, avg. samples / sec: 2159.21 | |
Iteration: 4740, Loss function: 3.766, Average Loss: 4.239, avg. samples / sec: 2159.57 | |
Iteration: 4760, Loss function: 4.027, Average Loss: 4.235, avg. samples / sec: 2159.85 | |
Iteration: 4780, Loss function: 4.393, Average Loss: 4.230, avg. samples / sec: 2156.84 | |
Iteration: 4800, Loss function: 4.010, Average Loss: 4.228, avg. samples / sec: 2160.09 | |
Iteration: 4820, Loss function: 4.136, Average Loss: 4.225, avg. samples / sec: 2160.08 | |
Iteration: 4840, Loss function: 3.980, Average Loss: 4.222, avg. samples / sec: 2156.41 | |
Iteration: 4860, Loss function: 4.360, Average Loss: 4.220, avg. samples / sec: 2161.53 | |
Iteration: 4880, Loss function: 4.039, Average Loss: 4.217, avg. samples / sec: 2154.16 | |
:::MLL 1596480635.383 epoch_stop: {"value": null, "metadata": {"epoch_num": 20, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480635.383 epoch_start: {"value": null, "metadata": {"epoch_num": 21, "file": "train.py", "lineno": 673}} | |
Iteration: 4900, Loss function: 3.766, Average Loss: 4.213, avg. samples / sec: 2150.53 | |
Iteration: 4920, Loss function: 3.909, Average Loss: 4.210, avg. samples / sec: 2156.41 | |
Iteration: 4940, Loss function: 4.042, Average Loss: 4.205, avg. samples / sec: 2159.91 | |
Iteration: 4960, Loss function: 4.007, Average Loss: 4.202, avg. samples / sec: 2156.67 | |
Iteration: 4980, Loss function: 4.399, Average Loss: 4.200, avg. samples / sec: 2152.86 | |
Iteration: 5000, Loss function: 4.069, Average Loss: 4.197, avg. samples / sec: 2157.00 | |
Iteration: 5020, Loss function: 4.131, Average Loss: 4.194, avg. samples / sec: 2154.31 | |
Iteration: 5040, Loss function: 3.919, Average Loss: 4.192, avg. samples / sec: 2155.14 | |
Iteration: 5060, Loss function: 4.102, Average Loss: 4.189, avg. samples / sec: 2159.87 | |
Iteration: 5080, Loss function: 4.234, Average Loss: 4.187, avg. samples / sec: 2156.58 | |
Iteration: 5100, Loss function: 4.227, Average Loss: 4.186, avg. samples / sec: 2154.93 | |
Iteration: 5120, Loss function: 3.796, Average Loss: 4.183, avg. samples / sec: 2158.16 | |
:::MLL 1596480689.709 epoch_stop: {"value": null, "metadata": {"epoch_num": 21, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480689.710 epoch_start: {"value": null, "metadata": {"epoch_num": 22, "file": "train.py", "lineno": 673}} | |
Iteration: 5140, Loss function: 4.078, Average Loss: 4.180, avg. samples / sec: 2150.09 | |
Iteration: 5160, Loss function: 3.865, Average Loss: 4.176, avg. samples / sec: 2157.26 | |
Iteration: 5180, Loss function: 3.856, Average Loss: 4.172, avg. samples / sec: 2160.17 | |
Iteration: 5200, Loss function: 4.226, Average Loss: 4.168, avg. samples / sec: 2160.80 | |
Iteration: 5220, Loss function: 3.712, Average Loss: 4.165, avg. samples / sec: 2159.35 | |
Iteration: 5240, Loss function: 4.145, Average Loss: 4.163, avg. samples / sec: 2163.44 | |
Iteration: 5260, Loss function: 4.178, Average Loss: 4.161, avg. samples / sec: 2155.93 | |
Iteration: 5280, Loss function: 4.043, Average Loss: 4.159, avg. samples / sec: 2164.58 | |
Iteration: 5300, Loss function: 3.859, Average Loss: 4.156, avg. samples / sec: 2157.55 | |
Iteration: 5320, Loss function: 3.925, Average Loss: 4.153, avg. samples / sec: 2161.92 | |
Iteration: 5340, Loss function: 4.105, Average Loss: 4.152, avg. samples / sec: 2158.87 | |
Iteration: 5360, Loss function: 3.873, Average Loss: 4.150, avg. samples / sec: 2154.39 | |
:::MLL 1596480743.963 epoch_stop: {"value": null, "metadata": {"epoch_num": 22, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480743.964 epoch_start: {"value": null, "metadata": {"epoch_num": 23, "file": "train.py", "lineno": 673}} | |
Iteration: 5380, Loss function: 4.001, Average Loss: 4.147, avg. samples / sec: 2152.11 | |
Iteration: 5400, Loss function: 4.002, Average Loss: 4.144, avg. samples / sec: 2159.55 | |
Iteration: 5420, Loss function: 4.236, Average Loss: 4.142, avg. samples / sec: 2160.82 | |
Iteration: 5440, Loss function: 4.035, Average Loss: 4.138, avg. samples / sec: 2161.06 | |
Iteration: 5460, Loss function: 4.059, Average Loss: 4.136, avg. samples / sec: 2162.96 | |
Iteration: 5480, Loss function: 3.971, Average Loss: 4.134, avg. samples / sec: 2161.25 | |
Iteration: 5500, Loss function: 3.972, Average Loss: 4.130, avg. samples / sec: 2159.53 | |
Iteration: 5520, Loss function: 3.861, Average Loss: 4.127, avg. samples / sec: 2152.00 | |
Iteration: 5540, Loss function: 4.353, Average Loss: 4.126, avg. samples / sec: 2153.90 | |
Iteration: 5560, Loss function: 4.084, Average Loss: 4.123, avg. samples / sec: 2159.93 | |
Iteration: 5580, Loss function: 3.999, Average Loss: 4.121, avg. samples / sec: 2156.96 | |
Iteration: 5600, Loss function: 4.050, Average Loss: 4.119, avg. samples / sec: 2157.83 | |
:::MLL 1596480798.230 epoch_stop: {"value": null, "metadata": {"epoch_num": 23, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480798.230 epoch_start: {"value": null, "metadata": {"epoch_num": 24, "file": "train.py", "lineno": 673}} | |
Iteration: 5620, Loss function: 3.965, Average Loss: 4.117, avg. samples / sec: 2155.74 | |
Iteration: 5640, Loss function: 3.910, Average Loss: 4.112, avg. samples / sec: 2154.94 | |
Iteration: 5660, Loss function: 3.904, Average Loss: 4.109, avg. samples / sec: 2157.27 | |
Iteration: 5680, Loss function: 3.948, Average Loss: 4.106, avg. samples / sec: 2159.06 | |
Iteration: 5700, Loss function: 4.297, Average Loss: 4.105, avg. samples / sec: 2164.41 | |
Iteration: 5720, Loss function: 4.062, Average Loss: 4.102, avg. samples / sec: 2157.56 | |
Iteration: 5740, Loss function: 3.897, Average Loss: 4.101, avg. samples / sec: 2162.14 | |
Iteration: 5760, Loss function: 3.779, Average Loss: 4.097, avg. samples / sec: 2159.34 | |
Iteration: 5780, Loss function: 3.985, Average Loss: 4.096, avg. samples / sec: 2156.78 | |
Iteration: 5800, Loss function: 4.293, Average Loss: 4.094, avg. samples / sec: 2158.05 | |
Iteration: 5820, Loss function: 3.771, Average Loss: 4.093, avg. samples / sec: 2157.63 | |
Iteration: 5840, Loss function: 3.888, Average Loss: 4.091, avg. samples / sec: 2155.72 | |
Iteration: 5860, Loss function: 3.951, Average Loss: 4.089, avg. samples / sec: 2154.48 | |
:::MLL 1596480852.731 epoch_stop: {"value": null, "metadata": {"epoch_num": 24, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480852.731 epoch_start: {"value": null, "metadata": {"epoch_num": 25, "file": "train.py", "lineno": 673}} | |
Iteration: 5880, Loss function: 3.919, Average Loss: 4.086, avg. samples / sec: 2150.65 | |
Iteration: 5900, Loss function: 3.863, Average Loss: 4.082, avg. samples / sec: 2161.49 | |
Iteration: 5920, Loss function: 3.884, Average Loss: 4.077, avg. samples / sec: 2159.71 | |
Iteration: 5940, Loss function: 3.872, Average Loss: 4.075, avg. samples / sec: 2163.01 | |
Iteration: 5960, Loss function: 3.909, Average Loss: 4.073, avg. samples / sec: 2152.70 | |
Iteration: 5980, Loss function: 3.738, Average Loss: 4.071, avg. samples / sec: 2158.93 | |
Iteration: 6000, Loss function: 3.696, Average Loss: 4.069, avg. samples / sec: 2163.44 | |
Iteration: 6020, Loss function: 3.783, Average Loss: 4.066, avg. samples / sec: 2163.25 | |
Iteration: 6040, Loss function: 3.888, Average Loss: 4.063, avg. samples / sec: 2159.56 | |
Iteration: 6060, Loss function: 3.766, Average Loss: 4.061, avg. samples / sec: 2155.66 | |
Iteration: 6080, Loss function: 3.921, Average Loss: 4.060, avg. samples / sec: 2159.57 | |
Iteration: 6100, Loss function: 3.696, Average Loss: 4.059, avg. samples / sec: 2158.10 | |
:::MLL 1596480906.988 epoch_stop: {"value": null, "metadata": {"epoch_num": 25, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480906.988 epoch_start: {"value": null, "metadata": {"epoch_num": 26, "file": "train.py", "lineno": 673}} | |
Iteration: 6120, Loss function: 3.954, Average Loss: 4.057, avg. samples / sec: 2148.27 | |
Iteration: 6140, Loss function: 3.765, Average Loss: 4.053, avg. samples / sec: 2161.21 | |
Iteration: 6160, Loss function: 3.696, Average Loss: 4.050, avg. samples / sec: 2154.37 | |
Iteration: 6180, Loss function: 3.989, Average Loss: 4.047, avg. samples / sec: 2160.51 | |
Iteration: 6200, Loss function: 3.662, Average Loss: 4.045, avg. samples / sec: 2160.90 | |
Iteration: 6220, Loss function: 3.626, Average Loss: 4.043, avg. samples / sec: 2160.90 | |
Iteration: 6240, Loss function: 3.757, Average Loss: 4.040, avg. samples / sec: 2159.76 | |
Iteration: 6260, Loss function: 3.954, Average Loss: 4.039, avg. samples / sec: 2162.14 | |
Iteration: 6280, Loss function: 3.677, Average Loss: 4.037, avg. samples / sec: 2158.22 | |
Iteration: 6300, Loss function: 3.757, Average Loss: 4.036, avg. samples / sec: 2158.30 | |
Iteration: 6320, Loss function: 4.010, Average Loss: 4.034, avg. samples / sec: 2150.87 | |
Iteration: 6340, Loss function: 3.905, Average Loss: 4.033, avg. samples / sec: 2158.46 | |
:::MLL 1596480961.264 epoch_stop: {"value": null, "metadata": {"epoch_num": 26, "file": "train.py", "lineno": 819}} | |
:::MLL 1596480961.264 epoch_start: {"value": null, "metadata": {"epoch_num": 27, "file": "train.py", "lineno": 673}} | |
Iteration: 6360, Loss function: 4.010, Average Loss: 4.031, avg. samples / sec: 2152.97 | |
Iteration: 6380, Loss function: 3.847, Average Loss: 4.029, avg. samples / sec: 2158.93 | |
Iteration: 6400, Loss function: 3.988, Average Loss: 4.026, avg. samples / sec: 2162.26 | |
Iteration: 6420, Loss function: 3.583, Average Loss: 4.023, avg. samples / sec: 2159.83 | |
Iteration: 6440, Loss function: 3.677, Average Loss: 4.020, avg. samples / sec: 2153.38 | |
Iteration: 6460, Loss function: 4.038, Average Loss: 4.017, avg. samples / sec: 2156.10 | |
Iteration: 6480, Loss function: 3.818, Average Loss: 4.015, avg. samples / sec: 2157.75 | |
Iteration: 6500, Loss function: 3.779, Average Loss: 4.012, avg. samples / sec: 2160.70 | |
Iteration: 6520, Loss function: 4.000, Average Loss: 4.011, avg. samples / sec: 2161.56 | |
Iteration: 6540, Loss function: 3.770, Average Loss: 4.009, avg. samples / sec: 2163.00 | |
Iteration: 6560, Loss function: 3.731, Average Loss: 4.008, avg. samples / sec: 2160.18 | |
Iteration: 6580, Loss function: 4.048, Average Loss: 4.007, avg. samples / sec: 2164.20 | |
:::MLL 1596481015.724 epoch_stop: {"value": null, "metadata": {"epoch_num": 27, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481015.725 epoch_start: {"value": null, "metadata": {"epoch_num": 28, "file": "train.py", "lineno": 673}} | |
Iteration: 6600, Loss function: 3.615, Average Loss: 4.005, avg. samples / sec: 2154.10 | |
Iteration: 6620, Loss function: 3.934, Average Loss: 4.004, avg. samples / sec: 2157.89 | |
Iteration: 6640, Loss function: 4.069, Average Loss: 4.002, avg. samples / sec: 2161.21 | |
Iteration: 6660, Loss function: 3.870, Average Loss: 3.999, avg. samples / sec: 2161.08 | |
Iteration: 6680, Loss function: 3.847, Average Loss: 3.997, avg. samples / sec: 2156.68 | |
Iteration: 6700, Loss function: 4.199, Average Loss: 3.994, avg. samples / sec: 2155.52 | |
Iteration: 6720, Loss function: 3.991, Average Loss: 3.993, avg. samples / sec: 2156.30 | |
Iteration: 6740, Loss function: 3.897, Average Loss: 3.990, avg. samples / sec: 2157.64 | |
Iteration: 6760, Loss function: 3.784, Average Loss: 3.988, avg. samples / sec: 2158.16 | |
Iteration: 6780, Loss function: 4.239, Average Loss: 3.987, avg. samples / sec: 2164.47 | |
Iteration: 6800, Loss function: 3.871, Average Loss: 3.987, avg. samples / sec: 2165.53 | |
Iteration: 6820, Loss function: 3.838, Average Loss: 3.986, avg. samples / sec: 2162.49 | |
Iteration: 6840, Loss function: 3.652, Average Loss: 3.985, avg. samples / sec: 2155.52 | |
:::MLL 1596481069.976 epoch_stop: {"value": null, "metadata": {"epoch_num": 28, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481069.977 epoch_start: {"value": null, "metadata": {"epoch_num": 29, "file": "train.py", "lineno": 673}} | |
Iteration: 6860, Loss function: 3.879, Average Loss: 3.982, avg. samples / sec: 2153.93 | |
Iteration: 6880, Loss function: 4.029, Average Loss: 3.980, avg. samples / sec: 2162.57 | |
Iteration: 6900, Loss function: 3.860, Average Loss: 3.976, avg. samples / sec: 2158.00 | |
Iteration: 6920, Loss function: 3.828, Average Loss: 3.974, avg. samples / sec: 2157.75 | |
Iteration: 6940, Loss function: 3.702, Average Loss: 3.973, avg. samples / sec: 2158.96 | |
Iteration: 6960, Loss function: 3.953, Average Loss: 3.970, avg. samples / sec: 2156.08 | |
Iteration: 6980, Loss function: 3.951, Average Loss: 3.968, avg. samples / sec: 2156.65 | |
Iteration: 7000, Loss function: 3.761, Average Loss: 3.966, avg. samples / sec: 2156.52 | |
Iteration: 7020, Loss function: 4.069, Average Loss: 3.965, avg. samples / sec: 2153.93 | |
Iteration: 7040, Loss function: 3.687, Average Loss: 3.963, avg. samples / sec: 2158.35 | |
Iteration: 7060, Loss function: 3.927, Average Loss: 3.961, avg. samples / sec: 2162.74 | |
Iteration: 7080, Loss function: 3.998, Average Loss: 3.959, avg. samples / sec: 2158.71 | |
:::MLL 1596481124.249 epoch_stop: {"value": null, "metadata": {"epoch_num": 29, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481124.250 epoch_start: {"value": null, "metadata": {"epoch_num": 30, "file": "train.py", "lineno": 673}} | |
Iteration: 7100, Loss function: 4.112, Average Loss: 3.958, avg. samples / sec: 2153.73 | |
Iteration: 7120, Loss function: 3.807, Average Loss: 3.955, avg. samples / sec: 2155.98 | |
Iteration: 7140, Loss function: 3.739, Average Loss: 3.953, avg. samples / sec: 2159.02 | |
Iteration: 7160, Loss function: 3.835, Average Loss: 3.952, avg. samples / sec: 2159.56 | |
Iteration: 7180, Loss function: 4.076, Average Loss: 3.951, avg. samples / sec: 2157.65 | |
Iteration: 7200, Loss function: 3.694, Average Loss: 3.950, avg. samples / sec: 2151.27 | |
Iteration: 7220, Loss function: 4.253, Average Loss: 3.948, avg. samples / sec: 2155.33 | |
Iteration: 7240, Loss function: 3.681, Average Loss: 3.946, avg. samples / sec: 2153.58 | |
Iteration: 7260, Loss function: 3.633, Average Loss: 3.943, avg. samples / sec: 2159.88 | |
Iteration: 7280, Loss function: 4.122, Average Loss: 3.941, avg. samples / sec: 2152.36 | |
Iteration: 7300, Loss function: 3.870, Average Loss: 3.940, avg. samples / sec: 2157.78 | |
Iteration: 7320, Loss function: 3.878, Average Loss: 3.940, avg. samples / sec: 2157.15 | |
:::MLL 1596481178.797 epoch_stop: {"value": null, "metadata": {"epoch_num": 30, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481178.797 epoch_start: {"value": null, "metadata": {"epoch_num": 31, "file": "train.py", "lineno": 673}} | |
Iteration: 7340, Loss function: 3.699, Average Loss: 3.938, avg. samples / sec: 2151.15 | |
Iteration: 7360, Loss function: 3.670, Average Loss: 3.936, avg. samples / sec: 2155.38 | |
Iteration: 7380, Loss function: 3.838, Average Loss: 3.934, avg. samples / sec: 2159.04 | |
Iteration: 7400, Loss function: 3.631, Average Loss: 3.932, avg. samples / sec: 2155.24 | |
Iteration: 7420, Loss function: 3.689, Average Loss: 3.931, avg. samples / sec: 2157.41 | |
Iteration: 7440, Loss function: 3.871, Average Loss: 3.928, avg. samples / sec: 2158.12 | |
Iteration: 7460, Loss function: 3.878, Average Loss: 3.927, avg. samples / sec: 2161.10 | |
Iteration: 7480, Loss function: 3.930, Average Loss: 3.925, avg. samples / sec: 2158.26 | |
Iteration: 7500, Loss function: 3.489, Average Loss: 3.925, avg. samples / sec: 2156.36 | |
Iteration: 7520, Loss function: 3.768, Average Loss: 3.925, avg. samples / sec: 2157.30 | |
Iteration: 7540, Loss function: 3.571, Average Loss: 3.923, avg. samples / sec: 2157.04 | |
Iteration: 7560, Loss function: 3.694, Average Loss: 3.922, avg. samples / sec: 2157.14 | |
:::MLL 1596481233.101 epoch_stop: {"value": null, "metadata": {"epoch_num": 31, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481233.102 epoch_start: {"value": null, "metadata": {"epoch_num": 32, "file": "train.py", "lineno": 673}} | |
Iteration: 7580, Loss function: 3.924, Average Loss: 3.919, avg. samples / sec: 2147.91 | |
Iteration: 7600, Loss function: 3.780, Average Loss: 3.917, avg. samples / sec: 2152.56 | |
Iteration: 7620, Loss function: 4.150, Average Loss: 3.916, avg. samples / sec: 2155.62 | |
Iteration: 7640, Loss function: 3.677, Average Loss: 3.915, avg. samples / sec: 2160.87 | |
Iteration: 7660, Loss function: 3.770, Average Loss: 3.913, avg. samples / sec: 2161.66 | |
Iteration: 7680, Loss function: 3.702, Average Loss: 3.912, avg. samples / sec: 2153.39 | |
Iteration: 7700, Loss function: 3.846, Average Loss: 3.910, avg. samples / sec: 2163.73 | |
Iteration: 7720, Loss function: 3.724, Average Loss: 3.910, avg. samples / sec: 2157.08 | |
Iteration: 7740, Loss function: 3.712, Average Loss: 3.907, avg. samples / sec: 2159.77 | |
Iteration: 7760, Loss function: 3.650, Average Loss: 3.906, avg. samples / sec: 2159.58 | |
Iteration: 7780, Loss function: 3.723, Average Loss: 3.904, avg. samples / sec: 2163.22 | |
Iteration: 7800, Loss function: 3.934, Average Loss: 3.902, avg. samples / sec: 2156.48 | |
:::MLL 1596481287.372 epoch_stop: {"value": null, "metadata": {"epoch_num": 32, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481287.373 epoch_start: {"value": null, "metadata": {"epoch_num": 33, "file": "train.py", "lineno": 673}} | |
Iteration: 7820, Loss function: 3.696, Average Loss: 3.902, avg. samples / sec: 2153.34 | |
Iteration: 7840, Loss function: 3.769, Average Loss: 3.901, avg. samples / sec: 2159.35 | |
Iteration: 7860, Loss function: 3.842, Average Loss: 3.899, avg. samples / sec: 2154.59 | |
Iteration: 7880, Loss function: 4.000, Average Loss: 3.897, avg. samples / sec: 2157.98 | |
Iteration: 7900, Loss function: 3.511, Average Loss: 3.894, avg. samples / sec: 2156.98 | |
Iteration: 7920, Loss function: 3.779, Average Loss: 3.892, avg. samples / sec: 2153.65 | |
Iteration: 7940, Loss function: 3.964, Average Loss: 3.890, avg. samples / sec: 2153.04 | |
Iteration: 7960, Loss function: 3.720, Average Loss: 3.888, avg. samples / sec: 2160.96 | |
Iteration: 7980, Loss function: 3.921, Average Loss: 3.887, avg. samples / sec: 2157.32 | |
Iteration: 8000, Loss function: 3.769, Average Loss: 3.887, avg. samples / sec: 2157.35 | |
:::MLL 1596481328.115 eval_start: {"value": null, "metadata": {"epoch_num": 33, "file": "train.py", "lineno": 276}} | |
Predicting Ended, total time: 12.05 s | |
Loading and preparing results... | |
Loading and preparing results... | |
Loading and preparing results... | |
Loading and preparing results... | |
DONE (t=0.56s) | |
DONE (t=0.56s) | |
DONE (t=0.56s) | |
DONE (t=0.57s) | |
Running per image evaluation... | |
Evaluate annotation type *bbox* | |
DONE (t=3.08s). | |
Accumulating evaluation results... | |
DONE (t=0.00s). | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.18284 | |
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.33092 | |
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.18368 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.04235 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.18964 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.29474 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.18660 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.27321 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.28883 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.07753 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.30996 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.44755 | |
Current AP: 0.18284 AP goal: 0.23000 | |
:::MLL 1596481343.872 eval_accuracy: {"value": 0.18284130761312606, "metadata": {"epoch_num": 33, "file": "train.py", "lineno": 389}} | |
:::MLL 1596481343.910 eval_stop: {"value": null, "metadata": {"epoch_num": 33, "file": "train.py", "lineno": 392}} | |
:::MLL 1596481343.935 block_stop: {"value": null, "metadata": {"first_epoch_num": 1, "file": "train.py", "lineno": 804}} | |
:::MLL 1596481343.936 block_start: {"value": null, "metadata": {"first_epoch_num": 33, "epoch_count": 10.915354834308324, "file": "train.py", "lineno": 813}} | |
Iteration: 8020, Loss function: 3.866, Average Loss: 3.886, avg. samples / sec: 471.95 | |
Iteration: 8040, Loss function: 3.875, Average Loss: 3.886, avg. samples / sec: 2150.82 | |
Iteration: 8060, Loss function: 3.961, Average Loss: 3.885, avg. samples / sec: 2153.14 | |
:::MLL 1596481357.825 epoch_stop: {"value": null, "metadata": {"epoch_num": 33, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481357.825 epoch_start: {"value": null, "metadata": {"epoch_num": 34, "file": "train.py", "lineno": 673}} | |
Iteration: 8080, Loss function: 3.788, Average Loss: 3.883, avg. samples / sec: 2149.48 | |
Iteration: 8100, Loss function: 3.409, Average Loss: 3.882, avg. samples / sec: 2157.48 | |
Iteration: 8120, Loss function: 3.806, Average Loss: 3.880, avg. samples / sec: 2156.81 | |
Iteration: 8140, Loss function: 3.817, Average Loss: 3.878, avg. samples / sec: 2159.61 | |
Iteration: 8160, Loss function: 4.315, Average Loss: 3.878, avg. samples / sec: 2160.64 | |
Iteration: 8180, Loss function: 3.746, Average Loss: 3.876, avg. samples / sec: 2158.15 | |
Iteration: 8200, Loss function: 3.712, Average Loss: 3.875, avg. samples / sec: 2161.14 | |
Iteration: 8220, Loss function: 3.970, Average Loss: 3.874, avg. samples / sec: 2164.50 | |
Iteration: 8240, Loss function: 3.749, Average Loss: 3.873, avg. samples / sec: 2165.31 | |
Iteration: 8260, Loss function: 3.707, Average Loss: 3.873, avg. samples / sec: 2158.43 | |
Iteration: 8280, Loss function: 3.609, Average Loss: 3.871, avg. samples / sec: 2160.98 | |
Iteration: 8300, Loss function: 3.826, Average Loss: 3.870, avg. samples / sec: 2160.18 | |
:::MLL 1596481412.058 epoch_stop: {"value": null, "metadata": {"epoch_num": 34, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481412.059 epoch_start: {"value": null, "metadata": {"epoch_num": 35, "file": "train.py", "lineno": 673}} | |
Iteration: 8320, Loss function: 3.709, Average Loss: 3.869, avg. samples / sec: 2155.99 | |
Iteration: 8340, Loss function: 3.735, Average Loss: 3.866, avg. samples / sec: 2159.77 | |
Iteration: 8360, Loss function: 3.939, Average Loss: 3.865, avg. samples / sec: 2159.31 | |
Iteration: 8380, Loss function: 3.912, Average Loss: 3.863, avg. samples / sec: 2155.06 | |
Iteration: 8400, Loss function: 3.712, Average Loss: 3.862, avg. samples / sec: 2159.35 | |
Iteration: 8420, Loss function: 3.748, Average Loss: 3.861, avg. samples / sec: 2161.74 | |
Iteration: 8440, Loss function: 3.775, Average Loss: 3.860, avg. samples / sec: 2159.50 | |
Iteration: 8460, Loss function: 3.874, Average Loss: 3.859, avg. samples / sec: 2159.03 | |
Iteration: 8480, Loss function: 3.602, Average Loss: 3.859, avg. samples / sec: 2148.66 | |
Iteration: 8500, Loss function: 3.683, Average Loss: 3.858, avg. samples / sec: 2155.91 | |
Iteration: 8520, Loss function: 3.898, Average Loss: 3.857, avg. samples / sec: 2159.81 | |
Iteration: 8540, Loss function: 3.846, Average Loss: 3.856, avg. samples / sec: 2153.22 | |
:::MLL 1596481466.350 epoch_stop: {"value": null, "metadata": {"epoch_num": 35, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481466.351 epoch_start: {"value": null, "metadata": {"epoch_num": 36, "file": "train.py", "lineno": 673}} | |
Iteration: 8560, Loss function: 3.751, Average Loss: 3.856, avg. samples / sec: 2149.65 | |
Iteration: 8580, Loss function: 3.548, Average Loss: 3.854, avg. samples / sec: 2158.12 | |
Iteration: 8600, Loss function: 3.782, Average Loss: 3.851, avg. samples / sec: 2155.82 | |
Iteration: 8620, Loss function: 3.761, Average Loss: 3.850, avg. samples / sec: 2157.59 | |
Iteration: 8640, Loss function: 3.676, Average Loss: 3.848, avg. samples / sec: 2156.43 | |
Iteration: 8660, Loss function: 4.101, Average Loss: 3.848, avg. samples / sec: 2151.28 | |
Iteration: 8680, Loss function: 4.023, Average Loss: 3.848, avg. samples / sec: 2152.71 | |
Iteration: 8700, Loss function: 3.718, Average Loss: 3.847, avg. samples / sec: 2156.35 | |
Iteration: 8720, Loss function: 3.531, Average Loss: 3.846, avg. samples / sec: 2152.77 | |
Iteration: 8740, Loss function: 3.640, Average Loss: 3.845, avg. samples / sec: 2148.75 | |
Iteration: 8760, Loss function: 4.122, Average Loss: 3.845, avg. samples / sec: 2151.98 | |
Iteration: 8780, Loss function: 3.630, Average Loss: 3.845, avg. samples / sec: 2150.97 | |
:::MLL 1596481520.734 epoch_stop: {"value": null, "metadata": {"epoch_num": 36, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481520.735 epoch_start: {"value": null, "metadata": {"epoch_num": 37, "file": "train.py", "lineno": 673}} | |
Iteration: 8800, Loss function: 3.798, Average Loss: 3.844, avg. samples / sec: 2154.32 | |
Iteration: 8820, Loss function: 3.434, Average Loss: 3.841, avg. samples / sec: 2157.29 | |
Iteration: 8840, Loss function: 3.756, Average Loss: 3.840, avg. samples / sec: 2159.71 | |
Iteration: 8860, Loss function: 4.233, Average Loss: 3.839, avg. samples / sec: 2156.03 | |
Iteration: 8880, Loss function: 3.705, Average Loss: 3.836, avg. samples / sec: 2161.19 | |
Iteration: 8900, Loss function: 3.731, Average Loss: 3.835, avg. samples / sec: 2153.98 | |
Iteration: 8920, Loss function: 3.783, Average Loss: 3.833, avg. samples / sec: 2154.79 | |
Iteration: 8940, Loss function: 3.867, Average Loss: 3.831, avg. samples / sec: 2152.78 | |
Iteration: 8960, Loss function: 3.721, Average Loss: 3.831, avg. samples / sec: 2156.70 | |
Iteration: 8980, Loss function: 3.890, Average Loss: 3.830, avg. samples / sec: 2150.47 | |
Iteration: 9000, Loss function: 3.718, Average Loss: 3.830, avg. samples / sec: 2156.91 | |
Iteration: 9020, Loss function: 3.441, Average Loss: 3.829, avg. samples / sec: 2153.69 | |
:::MLL 1596481575.300 epoch_stop: {"value": null, "metadata": {"epoch_num": 37, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481575.301 epoch_start: {"value": null, "metadata": {"epoch_num": 38, "file": "train.py", "lineno": 673}} | |
Iteration: 9040, Loss function: 4.100, Average Loss: 3.829, avg. samples / sec: 2150.30 | |
Iteration: 9060, Loss function: 3.722, Average Loss: 3.827, avg. samples / sec: 2150.78 | |
Iteration: 9080, Loss function: 3.669, Average Loss: 3.826, avg. samples / sec: 2152.95 | |
Iteration: 9100, Loss function: 3.885, Average Loss: 3.824, avg. samples / sec: 2157.10 | |
Iteration: 9120, Loss function: 3.812, Average Loss: 3.822, avg. samples / sec: 2152.47 | |
Iteration: 9140, Loss function: 3.616, Average Loss: 3.821, avg. samples / sec: 2157.30 | |
Iteration: 9160, Loss function: 3.746, Average Loss: 3.820, avg. samples / sec: 2154.10 | |
Iteration: 9180, Loss function: 3.720, Average Loss: 3.819, avg. samples / sec: 2157.79 | |
Iteration: 9200, Loss function: 3.797, Average Loss: 3.819, avg. samples / sec: 2157.84 | |
Iteration: 9220, Loss function: 3.834, Average Loss: 3.818, avg. samples / sec: 2150.29 | |
Iteration: 9240, Loss function: 3.834, Average Loss: 3.818, avg. samples / sec: 2156.46 | |
Iteration: 9260, Loss function: 3.996, Average Loss: 3.817, avg. samples / sec: 2155.91 | |
Iteration: 9280, Loss function: 3.829, Average Loss: 3.817, avg. samples / sec: 2149.78 | |
:::MLL 1596481629.673 epoch_stop: {"value": null, "metadata": {"epoch_num": 38, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481629.673 epoch_start: {"value": null, "metadata": {"epoch_num": 39, "file": "train.py", "lineno": 673}} | |
Iteration: 9300, Loss function: 3.551, Average Loss: 3.815, avg. samples / sec: 2144.37 | |
Iteration: 9320, Loss function: 3.763, Average Loss: 3.813, avg. samples / sec: 2155.94 | |
Iteration: 9340, Loss function: 3.608, Average Loss: 3.811, avg. samples / sec: 2154.91 | |
Iteration: 9360, Loss function: 3.903, Average Loss: 3.809, avg. samples / sec: 2153.75 | |
Iteration: 9380, Loss function: 3.678, Average Loss: 3.808, avg. samples / sec: 2158.80 | |
Iteration: 9400, Loss function: 3.842, Average Loss: 3.808, avg. samples / sec: 2158.57 | |
Iteration: 9420, Loss function: 3.952, Average Loss: 3.807, avg. samples / sec: 2157.29 | |
Iteration: 9440, Loss function: 3.691, Average Loss: 3.805, avg. samples / sec: 2149.12 | |
Iteration: 9460, Loss function: 3.584, Average Loss: 3.803, avg. samples / sec: 2151.18 | |
Iteration: 9480, Loss function: 3.856, Average Loss: 3.802, avg. samples / sec: 2154.62 | |
Iteration: 9500, Loss function: 4.076, Average Loss: 3.801, avg. samples / sec: 2154.28 | |
Iteration: 9520, Loss function: 4.047, Average Loss: 3.800, avg. samples / sec: 2153.34 | |
:::MLL 1596481684.051 epoch_stop: {"value": null, "metadata": {"epoch_num": 39, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481684.052 epoch_start: {"value": null, "metadata": {"epoch_num": 40, "file": "train.py", "lineno": 673}} | |
Iteration: 9540, Loss function: 3.736, Average Loss: 3.799, avg. samples / sec: 2147.06 | |
Iteration: 9560, Loss function: 3.506, Average Loss: 3.797, avg. samples / sec: 2155.64 | |
Iteration: 9580, Loss function: 3.811, Average Loss: 3.794, avg. samples / sec: 2156.30 | |
Iteration: 9600, Loss function: 3.680, Average Loss: 3.793, avg. samples / sec: 2153.81 | |
Iteration: 9620, Loss function: 3.555, Average Loss: 3.790, avg. samples / sec: 2153.64 | |
Iteration: 9640, Loss function: 3.756, Average Loss: 3.790, avg. samples / sec: 2154.70 | |
Iteration: 9660, Loss function: 3.691, Average Loss: 3.788, avg. samples / sec: 2157.81 | |
Iteration: 9680, Loss function: 3.884, Average Loss: 3.788, avg. samples / sec: 2157.56 | |
Iteration: 9700, Loss function: 3.821, Average Loss: 3.787, avg. samples / sec: 2150.14 | |
Iteration: 9720, Loss function: 3.770, Average Loss: 3.787, avg. samples / sec: 2155.03 | |
Iteration: 9740, Loss function: 3.861, Average Loss: 3.786, avg. samples / sec: 2154.66 | |
Iteration: 9760, Loss function: 3.911, Average Loss: 3.786, avg. samples / sec: 2152.98 | |
:::MLL 1596481738.641 epoch_stop: {"value": null, "metadata": {"epoch_num": 40, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481738.641 epoch_start: {"value": null, "metadata": {"epoch_num": 41, "file": "train.py", "lineno": 673}} | |
Iteration: 9780, Loss function: 3.736, Average Loss: 3.785, avg. samples / sec: 2150.18 | |
Iteration: 9800, Loss function: 3.696, Average Loss: 3.784, avg. samples / sec: 2153.31 | |
Iteration: 9820, Loss function: 3.861, Average Loss: 3.782, avg. samples / sec: 2156.74 | |
Iteration: 9840, Loss function: 3.831, Average Loss: 3.780, avg. samples / sec: 2154.23 | |
Iteration: 9860, Loss function: 3.656, Average Loss: 3.779, avg. samples / sec: 2153.83 | |
Iteration: 9880, Loss function: 3.852, Average Loss: 3.778, avg. samples / sec: 2151.30 | |
Iteration: 9900, Loss function: 3.906, Average Loss: 3.777, avg. samples / sec: 2153.82 | |
Iteration: 9920, Loss function: 3.596, Average Loss: 3.775, avg. samples / sec: 2155.76 | |
Iteration: 9940, Loss function: 3.843, Average Loss: 3.775, avg. samples / sec: 2151.31 | |
Iteration: 9960, Loss function: 3.740, Average Loss: 3.774, avg. samples / sec: 2153.33 | |
Iteration: 9980, Loss function: 3.755, Average Loss: 3.774, avg. samples / sec: 2145.72 | |
Iteration: 10000, Loss function: 3.956, Average Loss: 3.773, avg. samples / sec: 2153.82 | |
:::MLL 1596481793.051 epoch_stop: {"value": null, "metadata": {"epoch_num": 41, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481793.051 epoch_start: {"value": null, "metadata": {"epoch_num": 42, "file": "train.py", "lineno": 673}} | |
Iteration: 10020, Loss function: 3.772, Average Loss: 3.773, avg. samples / sec: 2147.29 | |
Iteration: 10040, Loss function: 4.243, Average Loss: 3.771, avg. samples / sec: 2153.27 | |
Iteration: 10060, Loss function: 3.819, Average Loss: 3.770, avg. samples / sec: 2153.47 | |
Iteration: 10080, Loss function: 3.803, Average Loss: 3.768, avg. samples / sec: 2149.85 | |
Iteration: 10100, Loss function: 3.892, Average Loss: 3.767, avg. samples / sec: 2152.50 | |
Iteration: 10120, Loss function: 3.556, Average Loss: 3.766, avg. samples / sec: 2156.29 | |
Iteration: 10140, Loss function: 3.435, Average Loss: 3.764, avg. samples / sec: 2154.82 | |
Iteration: 10160, Loss function: 3.944, Average Loss: 3.763, avg. samples / sec: 2152.65 | |
Iteration: 10180, Loss function: 3.895, Average Loss: 3.762, avg. samples / sec: 2154.76 | |
Iteration: 10200, Loss function: 3.675, Average Loss: 3.762, avg. samples / sec: 2158.51 | |
Iteration: 10220, Loss function: 4.045, Average Loss: 3.761, avg. samples / sec: 2156.36 | |
Iteration: 10240, Loss function: 3.511, Average Loss: 3.759, avg. samples / sec: 2147.94 | |
Iteration: 10260, Loss function: 3.611, Average Loss: 3.757, avg. samples / sec: 2156.79 | |
:::MLL 1596481847.437 epoch_stop: {"value": null, "metadata": {"epoch_num": 42, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481847.438 epoch_start: {"value": null, "metadata": {"epoch_num": 43, "file": "train.py", "lineno": 673}} | |
Iteration: 10280, Loss function: 4.140, Average Loss: 3.755, avg. samples / sec: 2144.01 | |
Iteration: 10300, Loss function: 3.850, Average Loss: 3.753, avg. samples / sec: 2157.82 | |
Iteration: 10320, Loss function: 3.517, Average Loss: 3.752, avg. samples / sec: 2158.52 | |
Iteration: 10340, Loss function: 3.418, Average Loss: 3.751, avg. samples / sec: 2157.78 | |
Iteration: 10360, Loss function: 3.970, Average Loss: 3.751, avg. samples / sec: 2154.23 | |
Iteration: 10380, Loss function: 3.552, Average Loss: 3.749, avg. samples / sec: 2156.86 | |
Iteration: 10400, Loss function: 3.722, Average Loss: 3.746, avg. samples / sec: 2161.42 | |
Iteration: 10420, Loss function: 3.843, Average Loss: 3.745, avg. samples / sec: 2157.12 | |
Iteration: 10440, Loss function: 3.876, Average Loss: 3.745, avg. samples / sec: 2149.52 | |
Iteration: 10460, Loss function: 3.593, Average Loss: 3.744, avg. samples / sec: 2153.87 | |
Iteration: 10480, Loss function: 3.790, Average Loss: 3.743, avg. samples / sec: 2144.03 | |
Iteration: 10500, Loss function: 3.587, Average Loss: 3.743, avg. samples / sec: 2152.93 | |
:::MLL 1596481902.035 epoch_stop: {"value": null, "metadata": {"epoch_num": 43, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481902.036 epoch_start: {"value": null, "metadata": {"epoch_num": 44, "file": "train.py", "lineno": 673}} | |
Iteration: 10520, Loss function: 3.704, Average Loss: 3.741, avg. samples / sec: 2152.02 | |
Iteration: 10540, Loss function: 4.021, Average Loss: 3.739, avg. samples / sec: 2160.91 | |
Iteration: 10560, Loss function: 3.829, Average Loss: 3.738, avg. samples / sec: 2155.40 | |
Iteration: 10580, Loss function: 3.565, Average Loss: 3.736, avg. samples / sec: 2160.39 | |
Iteration: 10600, Loss function: 3.554, Average Loss: 3.736, avg. samples / sec: 2157.86 | |
Iteration: 10620, Loss function: 3.736, Average Loss: 3.735, avg. samples / sec: 2151.95 | |
Iteration: 10640, Loss function: 3.682, Average Loss: 3.736, avg. samples / sec: 2154.60 | |
Iteration: 10660, Loss function: 3.653, Average Loss: 3.735, avg. samples / sec: 2154.48 | |
lr decay step #1 | |
:::MLL 1596481937.879 eval_start: {"value": null, "metadata": {"epoch_num": 44, "file": "train.py", "lineno": 276}} | |
Predicting Ended, total time: 11.73 s | |
Loading and preparing results... | |
Loading and preparing results... | |
Loading and preparing results... | |
Loading and preparing results... | |
DONE (t=0.62s) | |
DONE (t=0.62s) | |
DONE (t=0.62s) | |
DONE (t=0.62s) | |
Running per image evaluation... | |
Evaluate annotation type *bbox* | |
DONE (t=2.86s). | |
Accumulating evaluation results... | |
DONE (t=0.00s). | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.18698 | |
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.33712 | |
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.18925 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.04901 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.19379 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.29924 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.19244 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.27989 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.29607 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.08418 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.31751 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.45562 | |
Current AP: 0.18698 AP goal: 0.23000 | |
:::MLL 1596481953.151 eval_accuracy: {"value": 0.18698260054161284, "metadata": {"epoch_num": 44, "file": "train.py", "lineno": 389}} | |
:::MLL 1596481953.170 eval_stop: {"value": null, "metadata": {"epoch_num": 44, "file": "train.py", "lineno": 392}} | |
:::MLL 1596481953.196 block_stop: {"value": null, "metadata": {"first_epoch_num": 33, "file": "train.py", "lineno": 804}} | |
:::MLL 1596481953.197 block_start: {"value": null, "metadata": {"first_epoch_num": 44, "epoch_count": 5.457677417154162, "file": "train.py", "lineno": 813}} | |
Iteration: 10680, Loss function: 3.374, Average Loss: 3.733, avg. samples / sec: 485.31 | |
Iteration: 10700, Loss function: 3.837, Average Loss: 3.729, avg. samples / sec: 2148.70 | |
Iteration: 10720, Loss function: 3.472, Average Loss: 3.724, avg. samples / sec: 2156.01 | |
Iteration: 10740, Loss function: 3.465, Average Loss: 3.719, avg. samples / sec: 2150.97 | |
:::MLL 1596481971.706 epoch_stop: {"value": null, "metadata": {"epoch_num": 44, "file": "train.py", "lineno": 819}} | |
:::MLL 1596481971.706 epoch_start: {"value": null, "metadata": {"epoch_num": 45, "file": "train.py", "lineno": 673}} | |
Iteration: 10760, Loss function: 3.074, Average Loss: 3.714, avg. samples / sec: 2154.85 | |
Iteration: 10780, Loss function: 3.192, Average Loss: 3.708, avg. samples / sec: 2160.23 | |
Iteration: 10800, Loss function: 3.346, Average Loss: 3.702, avg. samples / sec: 2163.82 | |
Iteration: 10820, Loss function: 3.479, Average Loss: 3.695, avg. samples / sec: 2156.46 | |
Iteration: 10840, Loss function: 3.245, Average Loss: 3.688, avg. samples / sec: 2159.42 | |
Iteration: 10860, Loss function: 3.296, Average Loss: 3.681, avg. samples / sec: 2161.21 | |
Iteration: 10880, Loss function: 3.236, Average Loss: 3.675, avg. samples / sec: 2152.32 | |
Iteration: 10900, Loss function: 3.356, Average Loss: 3.669, avg. samples / sec: 2153.93 | |
Iteration: 10920, Loss function: 3.474, Average Loss: 3.663, avg. samples / sec: 2160.98 | |
Iteration: 10940, Loss function: 3.167, Average Loss: 3.656, avg. samples / sec: 2154.25 | |
Iteration: 10960, Loss function: 3.263, Average Loss: 3.649, avg. samples / sec: 2155.49 | |
Iteration: 10980, Loss function: 3.157, Average Loss: 3.643, avg. samples / sec: 2155.84 | |
:::MLL 1596482026.008 epoch_stop: {"value": null, "metadata": {"epoch_num": 45, "file": "train.py", "lineno": 819}} | |
:::MLL 1596482026.008 epoch_start: {"value": null, "metadata": {"epoch_num": 46, "file": "train.py", "lineno": 673}} | |
Iteration: 11000, Loss function: 3.314, Average Loss: 3.636, avg. samples / sec: 2146.86 | |
Iteration: 11020, Loss function: 3.425, Average Loss: 3.630, avg. samples / sec: 2160.22 | |
Iteration: 11040, Loss function: 3.035, Average Loss: 3.624, avg. samples / sec: 2157.23 | |
Iteration: 11060, Loss function: 3.151, Average Loss: 3.617, avg. samples / sec: 2160.22 | |
Iteration: 11080, Loss function: 3.336, Average Loss: 3.612, avg. samples / sec: 2158.81 | |
Iteration: 11100, Loss function: 3.354, Average Loss: 3.606, avg. samples / sec: 2152.26 | |
Iteration: 11120, Loss function: 3.216, Average Loss: 3.601, avg. samples / sec: 2156.93 | |
Iteration: 11140, Loss function: 3.267, Average Loss: 3.595, avg. samples / sec: 2159.12 | |
Iteration: 11160, Loss function: 3.206, Average Loss: 3.588, avg. samples / sec: 2153.06 | |
Iteration: 11180, Loss function: 3.378, Average Loss: 3.583, avg. samples / sec: 2154.33 | |
Iteration: 11200, Loss function: 3.179, Average Loss: 3.579, avg. samples / sec: 2154.16 | |
Iteration: 11220, Loss function: 3.401, Average Loss: 3.572, avg. samples / sec: 2157.33 | |
:::MLL 1596482080.339 epoch_stop: {"value": null, "metadata": {"epoch_num": 46, "file": "train.py", "lineno": 819}} | |
:::MLL 1596482080.339 epoch_start: {"value": null, "metadata": {"epoch_num": 47, "file": "train.py", "lineno": 673}} | |
Iteration: 11240, Loss function: 3.034, Average Loss: 3.566, avg. samples / sec: 2145.88 | |
Iteration: 11260, Loss function: 3.199, Average Loss: 3.561, avg. samples / sec: 2154.69 | |
Iteration: 11280, Loss function: 3.202, Average Loss: 3.557, avg. samples / sec: 2154.00 | |
Iteration: 11300, Loss function: 3.447, Average Loss: 3.552, avg. samples / sec: 2151.41 | |
Iteration: 11320, Loss function: 3.014, Average Loss: 3.545, avg. samples / sec: 2154.98 | |
Iteration: 11340, Loss function: 3.353, Average Loss: 3.541, avg. samples / sec: 2150.67 | |
Iteration: 11360, Loss function: 3.385, Average Loss: 3.538, avg. samples / sec: 2158.86 | |
Iteration: 11380, Loss function: 3.330, Average Loss: 3.532, avg. samples / sec: 2155.16 | |
Iteration: 11400, Loss function: 3.344, Average Loss: 3.527, avg. samples / sec: 2151.99 | |
Iteration: 11420, Loss function: 3.172, Average Loss: 3.521, avg. samples / sec: 2154.03 | |
Iteration: 11440, Loss function: 3.556, Average Loss: 3.517, avg. samples / sec: 2145.76 | |
Iteration: 11460, Loss function: 3.269, Average Loss: 3.512, avg. samples / sec: 2157.61 | |
Iteration: 11480, Loss function: 3.199, Average Loss: 3.509, avg. samples / sec: 2150.91 | |
:::MLL 1596482134.962 epoch_stop: {"value": null, "metadata": {"epoch_num": 47, "file": "train.py", "lineno": 819}} | |
:::MLL 1596482134.963 epoch_start: {"value": null, "metadata": {"epoch_num": 48, "file": "train.py", "lineno": 673}} | |
Iteration: 11500, Loss function: 3.194, Average Loss: 3.505, avg. samples / sec: 2144.67 | |
Iteration: 11520, Loss function: 3.288, Average Loss: 3.501, avg. samples / sec: 2149.49 | |
Iteration: 11540, Loss function: 3.235, Average Loss: 3.498, avg. samples / sec: 2154.92 | |
Iteration: 11560, Loss function: 3.336, Average Loss: 3.493, avg. samples / sec: 2150.87 | |
Iteration: 11580, Loss function: 3.323, Average Loss: 3.490, avg. samples / sec: 2151.03 | |
Iteration: 11600, Loss function: 3.207, Average Loss: 3.486, avg. samples / sec: 2150.88 | |
Iteration: 11620, Loss function: 3.416, Average Loss: 3.482, avg. samples / sec: 2154.76 | |
Iteration: 11640, Loss function: 3.433, Average Loss: 3.479, avg. samples / sec: 2153.25 | |
Iteration: 11660, Loss function: 3.183, Average Loss: 3.474, avg. samples / sec: 2148.24 | |
Iteration: 11680, Loss function: 3.376, Average Loss: 3.470, avg. samples / sec: 2153.56 | |
Iteration: 11700, Loss function: 3.250, Average Loss: 3.465, avg. samples / sec: 2152.66 | |
Iteration: 11720, Loss function: 3.353, Average Loss: 3.461, avg. samples / sec: 2151.45 | |
:::MLL 1596482189.405 epoch_stop: {"value": null, "metadata": {"epoch_num": 48, "file": "train.py", "lineno": 819}} | |
:::MLL 1596482189.405 epoch_start: {"value": null, "metadata": {"epoch_num": 49, "file": "train.py", "lineno": 673}} | |
Iteration: 11740, Loss function: 3.490, Average Loss: 3.456, avg. samples / sec: 2142.28 | |
Iteration: 11760, Loss function: 3.352, Average Loss: 3.453, avg. samples / sec: 2146.70 | |
Iteration: 11780, Loss function: 2.993, Average Loss: 3.448, avg. samples / sec: 2153.76 | |
Iteration: 11800, Loss function: 3.137, Average Loss: 3.445, avg. samples / sec: 2151.94 | |
Iteration: 11820, Loss function: 3.134, Average Loss: 3.442, avg. samples / sec: 2153.78 | |
Iteration: 11840, Loss function: 3.061, Average Loss: 3.437, avg. samples / sec: 2156.19 | |
Iteration: 11860, Loss function: 3.360, Average Loss: 3.433, avg. samples / sec: 2155.59 | |
Iteration: 11880, Loss function: 3.183, Average Loss: 3.428, avg. samples / sec: 2151.52 | |
Iteration: 11900, Loss function: 3.155, Average Loss: 3.425, avg. samples / sec: 2150.51 | |
Iteration: 11920, Loss function: 3.085, Average Loss: 3.422, avg. samples / sec: 2152.15 | |
Iteration: 11940, Loss function: 3.288, Average Loss: 3.418, avg. samples / sec: 2149.24 | |
Iteration: 11960, Loss function: 3.395, Average Loss: 3.416, avg. samples / sec: 2152.41 | |
:::MLL 1596482243.851 epoch_stop: {"value": null, "metadata": {"epoch_num": 49, "file": "train.py", "lineno": 819}} | |
:::MLL 1596482243.851 epoch_start: {"value": null, "metadata": {"epoch_num": 50, "file": "train.py", "lineno": 673}} | |
Iteration: 11980, Loss function: 3.206, Average Loss: 3.413, avg. samples / sec: 2139.70 | |
Iteration: 12000, Loss function: 3.097, Average Loss: 3.410, avg. samples / sec: 2149.19 | |
:::MLL 1596482250.571 eval_start: {"value": null, "metadata": {"epoch_num": 50, "file": "train.py", "lineno": 276}} | |
Predicting Ended, total time: 11.32 s | |
Loading and preparing results... | |
Loading and preparing results... | |
Loading and preparing results... | |
Loading and preparing results... | |
DONE (t=0.66s) | |
DONE (t=0.67s) | |
DONE (t=0.67s) | |
DONE (t=0.67s) | |
Running per image evaluation... | |
Evaluate annotation type *bbox* | |
DONE (t=2.87s). | |
Accumulating evaluation results... | |
DONE (t=0.00s). | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.23580 | |
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.40337 | |
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.24307 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.06381 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.24911 | |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.37950 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.22684 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.32986 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.34675 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.11024 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.37755 | |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.52998 | |
Current AP: 0.23580 AP goal: 0.23000 | |
:::MLL 1596482265.493 eval_accuracy: {"value": 0.23579561756133255, "metadata": {"epoch_num": 50, "file": "train.py", "lineno": 389}} | |
:::MLL 1596482265.589 eval_stop: {"value": null, "metadata": {"epoch_num": 50, "file": "train.py", "lineno": 392}} | |
:::MLL 1596482265.616 block_stop: {"value": null, "metadata": {"first_epoch_num": 44, "file": "train.py", "lineno": 804}} | |
:::MLL 1596482266.062 run_stop: {"value": null, "metadata": {"status": "success", "file": "train.py", "lineno": 849}} | |
Binding: ['/usr/bin/numactl', '--physcpubind=0-3,16-19', '--membind=0', '/opt/conda/bin/python3', '-u', 'train.py', '--local_rank=0', '--use-fp16', '--nhwc', '--pad-input', '--jit', '--delay-allreduce', '--opt-loss', '--epochs', '80', '--warmup-factor', '0', '--no-save', '--threshold=0.23', '--data', '/data/coco2017', '--evaluation', '120000', '160000', '180000', '200000', '220000', '240000', '260000', '280000', '--batch-size', '120', '--eval-batch-size', '160', '--warmup', '650', '--lr', '2.92e-3', '--wd', '1.6e-4', '--use-nvjpeg', '--use-roi-decode'] | |
Binding: ['/usr/bin/numactl', '--physcpubind=4-7,20-23', '--membind=0', '/opt/conda/bin/python3', '-u', 'train.py', '--local_rank=1', '--use-fp16', '--nhwc', '--pad-input', '--jit', '--delay-allreduce', '--opt-loss', '--epochs', '80', '--warmup-factor', '0', '--no-save', '--threshold=0.23', '--data', '/data/coco2017', '--evaluation', '120000', '160000', '180000', '200000', '220000', '240000', '260000', '280000', '--batch-size', '120', '--eval-batch-size', '160', '--warmup', '650', '--lr', '2.92e-3', '--wd', '1.6e-4', '--use-nvjpeg', '--use-roi-decode'] | |
Binding: ['/usr/bin/numactl', '--physcpubind=8-11,24-27', '--membind=0', '/opt/conda/bin/python3', '-u', 'train.py', '--local_rank=2', '--use-fp16', '--nhwc', '--pad-input', '--jit', '--delay-allreduce', '--opt-loss', '--epochs', '80', '--warmup-factor', '0', '--no-save', '--threshold=0.23', '--data', '/data/coco2017', '--evaluation', '120000', '160000', '180000', '200000', '220000', '240000', '260000', '280000', '--batch-size', '120', '--eval-batch-size', '160', '--warmup', '650', '--lr', '2.92e-3', '--wd', '1.6e-4', '--use-nvjpeg', '--use-roi-decode'] | |
Binding: ['/usr/bin/numactl', '--physcpubind=12-15,28-31', '--membind=0', '/opt/conda/bin/python3', '-u', 'train.py', '--local_rank=3', '--use-fp16', '--nhwc', '--pad-input', '--jit', '--delay-allreduce', '--opt-loss', '--epochs', '80', '--warmup-factor', '0', '--no-save', '--threshold=0.23', '--data', '/data/coco2017', '--evaluation', '120000', '160000', '180000', '200000', '220000', '240000', '260000', '280000', '--batch-size', '120', '--eval-batch-size', '160', '--warmup', '650', '--lr', '2.92e-3', '--wd', '1.6e-4', '--use-nvjpeg', '--use-roi-decode'] | |
+ ret_code=0 | |
+ set +x | |
ENDING TIMING RUN AT 2020-08-03 07:17:50 PM | |
RESULT,SINGLE_STAGE_DETECTOR,,2747,nvidia,2020-08-03 06:32:03 PM |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
_CUDA_COMPAT_STATUS=CUDA Driver UNAVAILABLE (cuInit(0) returned 100) | |
NVIDIA_PYTORCH_VERSION=19.05 | |
MOFED_VERSION=4.4-1.0.0 | |
COCOAPI_VERSION=2.0+nv0.3.1 | |
CUDNN_VERSION=7.6.0.64 | |
HOSTNAME=ssd | |
DATADIR=/ocs-ml-data/coco | |
NVIDIA_REQUIRE_CUDA=cuda>=5.0 | |
KUBERNETES_PORT_443_TCP_PORT=443 | |
KUBERNETES_PORT=tcp://172.30.0.1:443 | |
TERM=xterm | |
NSIGHT_SYSTEMS_VERSION=2019.3.1 | |
CUBLAS_VERSION=10.2.0.163 | |
LIBRARY_PATH=/usr/local/cuda/lib64/stubs: | |
KUBERNETES_SERVICE_PORT=443 | |
KUBERNETES_SERVICE_HOST=172.30.0.1 | |
NEXP=1 | |
LC_ALL=C.UTF-8 | |
PYTHONIOENCODING=utf-8 | |
LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 | |
NVIDIA_VISIBLE_DEVICES=all | |
ENV=/etc/shinit | |
_CUDA_COMPAT_PATH=/usr/local/cuda/compat | |
CUDA_CACHE_DISABLE=1 | |
NVIDIA_DRIVER_CAPABILITIES=compute,utility | |
TRT_VERSION=5.1.5.0 | |
CUDA_DRIVER_VERSION=418.67 | |
NVIDIA_BUILD_ID=6411784 | |
PATH=/opt/conda/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin | |
PWD=/workspace/single_stage_detector | |
PYTORCH_VERSION=1.1.0a0+828a6a3 | |
PYTORCH_BUILD_VERSION=1.1.0a0+828a6a3 | |
CUDA_VERSION=10.1.163 | |
OMPI_MCA_btl_vader_single_copy_mechanism=none | |
SHLVL=1 | |
HOME=/root | |
DALI_VERSION=0.9.1 | |
KUBERNETES_PORT_443_TCP_PROTO=tcp | |
KUBERNETES_SERVICE_PORT_HTTPS=443 | |
DALI_BUILD=719215 | |
OPENMPI_VERSION=3.1.3 | |
NCCL_VERSION=2.4.6 | |
INSLURM=0 | |
BASH_ENV=/etc/bash.bashrc | |
LOGDIR=/ocs-ml-data/logs | |
NSS_SDB_USE_CACHE=no | |
OPENCV_FOR_THREADS_NUM=1 | |
OMP_NUM_THREADS=1 | |
PYTORCH_BUILD_NUMBER=0 | |
KUBERNETES_PORT_443_TCP_ADDR=172.30.0.1 | |
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443 | |
_=/usr/bin/printenv | |
Run vars: id 28869 gpus 4 mparams | |
STARTING TIMING RUN AT 2020-07-30 11:40:05 PM | |
+ NUMEPOCHS=80 | |
running benchmark | |
+ echo 'running benchmark' | |
+ export DATASET_DIR=/data/coco2017 | |
+ DATASET_DIR=/data/coco2017 | |
+ export TORCH_MODEL_ZOO=/data/torchvision | |
+ TORCH_MODEL_ZOO=/data/torchvision | |
+ python3 -m bind_launch --nsockets_per_node 1 --ncores_per_socket 16 --nproc_per_node 4 train.py --use-fp16 --nhwc --pad-input --jit --delay-allreduce --opt-loss --epochs 80 --warmup-factor 0 --no-save --threshold=0.23 --data /data/coco2017 --evaluation 120000 160000 180000 200000 220000 240000 260000 280000 --batch-size 120 --eval-batch-size 160 --warmup 650 --lr 2.92e-3 --wd 1.6e-4 --use-nvjpeg --use-roi-decode | |
:::MLL 1596152406.833 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
:::MLL 1596152406.835 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
:::MLL 1596152406.835 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
BN group: 1 | |
BN group: 1 | |
BN group: 1 | |
:::MLL 1596152406.839 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 833}} | |
BN group: 1 | |
0 Using seed = 4100562049 | |
1 Using seed = 4100562050 | |
2 Using seed = 4100562051 | |
3 Using seed = 4100562052 | |
:::MLL 1596152411.996 max_samples: {"value": 1, "metadata": {"file": "utils.py", "lineno": 465}} | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /data/torchvision/resnet34-333f7ec4.pth | |
87306240it [00:01, 49622227.05it/s] | |
87306240it [00:01, 49923219.48it/s] | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
Delaying allreduces to the end of backward() | |
:::MLL 1596152414.605 model_bn_span: {"value": 120, "metadata": {"file": "train.py", "lineno": 480}} | |
:::MLL 1596152414.605 global_batch_size: {"value": 480, "metadata": {"file": "train.py", "lineno": 481}} | |
:::MLL 1596152414.613 opt_base_learning_rate: {"value": 0.045, "metadata": {"file": "train.py", "lineno": 511}} | |
:::MLL 1596152414.614 opt_weight_decay: {"value": 0.00016, "metadata": {"file": "train.py", "lineno": 513}} | |
:::MLL 1596152414.614 opt_learning_rate_warmup_steps: {"value": 650, "metadata": {"file": "train.py", "lineno": 516}} | |
:::MLL 1596152414.615 opt_learning_rate_warmup_factor: {"value": 0, "metadata": {"file": "train.py", "lineno": 518}} | |
87306240it [00:00, 97183120.00it/s] | |
87306240it [00:00, 94301685.86it/s] | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:46: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. | |
warnings.warn(warning.format(ret)) | |
epoch nbatch loss | |
:::MLL 1596152423.319 init_stop: {"value": null, "metadata": {"file": "train.py", "lineno": 604}} | |
:::MLL 1596152423.320 run_start: {"value": null, "metadata": {"file": "train.py", "lineno": 610}} | |
loading annotations into memory... | |
loading annotations into memory... | |
loading annotations into memory... | |
loading annotations into memory... | |
Done (t=0.58s) | |
creating index... | |
Done (t=0.62s) | |
creating index... | |
Done (t=0.65s) | |
creating index... | |
Done (t=0.65s) | |
creating index... | |
time_check a: 1596152425.581552744 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Run vars: id 18702 gpus 4 mparams | |
+ SEED=15157 | |
+ MAX_TOKENS=10240 | |
+ DATASET_DIR=/data/data/mlperf/data/transformer/wmt14_en_de/utf8 | |
+ MODE=TRAIN | |
+ NUMEPOCHS=30 | |
+ case "$MODE" in | |
+ source run_training.sh | |
+++ date +%s | |
++ START=1596473651 | |
+++ date '+%Y-%m-%d %r' | |
++ START_FMT='2020-08-03 04:54:11 PM' | |
STARTING TIMING RUN AT 2020-08-03 04:54:11 PM | |
++ echo 'STARTING TIMING RUN AT 2020-08-03 04:54:11 PM' | |
++ [[ 4 -ne 1 ]] | |
++ DISTRIBUTED_INIT_METHOD='--distributed-init-method env://' | |
++ export DGXSYSTEM | |
++ export SLURM_NTASKS_PER_NODE | |
++ export SLURM_NNODES | |
++ export MLPERF_HOST_OS | |
++ python3 -m bind_launch --nsockets_per_node 1 --ncores_per_socket 16 --nproc_per_node 4 train.py /data/data/mlperf/data/transformer/wmt14_en_de/utf8 --seed 15157 --arch transformer_wmt_en_de_big_t2t --share-all-embeddings --optimizer adam --adam-betas '(0.9, 0.997)' --adam-eps 1e-9 --clip-norm 0.0 --lr-scheduler inverse_sqrt --warmup-init-lr 0.0 --warmup-updates 1000 --lr 1.976e-3 --min-lr 0.0 --dropout 0.1 --weight-decay 0.0 --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --max-tokens 10240 --max-epoch 30 --target-bleu 25.0 --ignore-case --no-save --update-freq 1 --fp16 --seq-len-multiple 2 --softmax-type fast_fill --source_lang en --target_lang de --bucket_growth_factor 1.035 --batching_scheme v0p5_better --batch_multiple_strategy dynamic --fast-xentropy --max-len-a 1 --max-len-b 50 --lenpen 0.6 --distributed-init-method env:// --max-source-positions 64 --max-target-positions 64 --enable-parallel-backward-allred-opt --parallel-backward-allred-opt-threshold 105404416 --parallel-backward-allred-cuda-nstreams 2 --adam-betas '(0.9,0.98)' | |
| distributed init (rank 0): env:// | |
| distributed env init. MASTER_ADDR: 127.0.0.1, MASTER_PORT: 29500, WORLD_SIZE: 4, RANK: 1 | |
| distributed init (rank 0): env:// | |
| distributed env init. MASTER_ADDR: 127.0.0.1, MASTER_PORT: 29500, WORLD_SIZE: 4, RANK: 3 | |
| distributed init (rank 0): env:// | |
| distributed env init. MASTER_ADDR: 127.0.0.1, MASTER_PORT: 29500, WORLD_SIZE: 4, RANK: 2 | |
| distributed init (rank 0): env:// | |
| distributed env init. MASTER_ADDR: 127.0.0.1, MASTER_PORT: 29500, WORLD_SIZE: 4, RANK: 0 | |
| distributed init done! | |
| distributed init done! | |
| distributed init done! | |
:::MLL 1596473656.039 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 57}} | |
| distributed init done! | |
| initialized host transformer as rank 0 and device id 0 | |
:::MLL 1596473656.048 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 57}} | |
:::MLL 1596473656.063 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 57}} | |
:::MLL 1596473656.074 init_start: {"value": null, "metadata": {"file": "train.py", "lineno": 57}} | |
Namespace(adam_betas='(0.9,0.98)', adam_eps=1e-09, adaptive_softmax_cutoff=None, arch='transformer_wmt_en_de_big_t2t', attention_dropout=0.1, batch_multiple_strategy='dynamic', batching_scheme='v0p5_better', beam=4, bucket_growth_factor=1.035, clip_norm=0.0, cpu=False, criterion='label_smoothed_cross_entropy', data='/data/data/mlperf/data/transformer/wmt14_en_de/utf8', dataloader_num_workers=1, decoder_attention_heads=16, decoder_embed_dim=1024, decoder_embed_path=None, decoder_ffn_embed_dim=4096, decoder_layers=6, decoder_learned_pos=False, decoder_normalize_before=True, device_id=0, distributed_backend='nccl', distributed_init_method='env://', distributed_port=-1, distributed_rank=0, distributed_world_size=4, dropout=0.1, enable_dataloader_pin_memory=False, enable_parallel_backward_allred_opt=True, enable_parallel_backward_allred_opt_correctness_check=False, encoder_attention_heads=16, encoder_embed_dim=1024, encoder_embed_path=None, encoder_ffn_embed_dim=4096, encoder_layers=6, encoder_learned_pos=False, encoder_normalize_before=True, fast_xentropy=True, fp16=True, fuse_dropout_add=False, fuse_relu_dropout=False, gen_subset='test', ignore_case=True, keep_interval_updates=-1, label_smoothing=0.1, left_pad_source='True', left_pad_target='False', lenpen=0.6, local_rank=0, log_format=None, log_interval=1000, log_translations=False, lr=[0.001976], lr_scheduler='inverse_sqrt', lr_shrink=0.1, max_epoch=30, max_len_a=1.0, max_len_b=50, max_sentences=None, max_sentences_valid=None, max_source_positions=64, max_target_positions=64, max_tokens=10240, max_update=0, min_len=1, min_loss_scale=0.0001, min_lr=0.0, model_overrides='{}', momentum=0.99, nbest=1, no_beamable_mm=False, no_early_stop=False, no_epoch_checkpoints=False, no_progress_bar=False, no_save=True, no_token_positional_embeddings=False, num_shards=1, online_eval=False, optimizer='adam', parallel_backward_allred_cuda_nstreams=2, parallel_backward_allred_opt_threshold=105404416, path=None, prefix_size=0, print_alignment=False, profile=None, quiet=False, raw_text=False, relu_dropout=0.1, remove_bpe=None, replace_unk=None, restore_file='checkpoint_last.pt', sampling=False, sampling_temperature=1, sampling_topk=-1, save_dir='checkpoints', save_interval=1, save_interval_updates=0, score_reference=False, seed=15157, sentence_avg=False, seq_len_multiple=2, shard_id=0, share_all_embeddings=True, share_decoder_input_output_embed=False, skip_invalid_size_inputs_valid_test=False, softmax_type='fast_fill', source_lang='en', target_bleu=25.0, target_lang='de', task='translation', train_subset='train', unkpen=0, unnormalized=False, update_freq=[1], valid_subset='valid', validate_interval=1, warmup_init_lr=0.0, warmup_updates=1000, weight_decay=0.0) | |
:::MLL 1596473660.411 global_batch_size: {"value": 40960, "metadata": {"file": "train.py", "lineno": 74}} | |
:::MLL 1596473660.411 opt_name: {"value": "adam", "metadata": {"file": "train.py", "lineno": 75}} | |
:::MLL 1596473660.412 opt_base_learning_rate: {"value": 0.001976, "metadata": {"file": "train.py", "lineno": 77}} | |
:::MLL 1596473660.412 opt_learning_rate_warmup_steps: {"value": 1000, "metadata": {"file": "train.py", "lineno": 78}} | |
:::MLL 1596473660.413 max_sequence_length: {"value": 64, "metadata": {"file": "train.py", "lineno": 80}} | |
:::MLL 1596473660.413 opt_adam_beta_1: {"value": 0.9, "metadata": {"file": "train.py", "lineno": 81}} | |
:::MLL 1596473660.414 opt_adam_beta_2: {"value": 0.98, "metadata": {"file": "train.py", "lineno": 82}} | |
:::MLL 1596473660.414 opt_adam_epsilon: {"value": 1e-09, "metadata": {"file": "train.py", "lineno": 83}} | |
| [en] dictionary: 33712 types | |
| [de] dictionary: 33712 types | |
| model transformer_wmt_en_de_big_t2t, criterion LabelSmoothedCrossEntropyCriterion | |
| num. model params: 210808832 | |
| parallel all-reduce ENABLED. all-reduce threshold: 105404416 | |
| # of parallel all-reduce cuda streams: 2 | |
| training on 4 GPUs | |
| max tokens per GPU = 10240 and max sentences per GPU = None | |
:::MLL 1596473666.564 init_stop: {"value": null, "metadata": {"file": "train.py", "lineno": 140}} | |
:::MLL 1596473666.564 run_start: {"value": null, "metadata": {"file": "train.py", "lineno": 142}} | |
filename: /data/data/mlperf/data/transformer/wmt14_en_de/utf8/train.en-de.en | |
raw_text: False | |
| /data/data/mlperf/data/transformer/wmt14_en_de/utf8 train 4590101 examples | |
filename: /data/data/mlperf/data/transformer/wmt14_en_de/utf8/train1.en-de.en | |
raw_text: False | |
filename: /data/data/mlperf/data/transformer/wmt14_en_de/utf8/train1.de-en.en | |
raw_text: False | |
srcline: tensor([16407, 337, 10148, 7, 5, 10701, 7796, 31212, 6, 8991, 10, 10148, 400, 59, 5, 8991, 4, 2]) | |
| Sentences are being padded to multiples of: 2 | |
filename: /data/data/mlperf/data/transformer/wmt14_en_de/utf8/test.en-de.en | |
raw_text: False | |
| /data/data/mlperf/data/transformer/wmt14_en_de/utf8 test 3003 examples | |
srcline: tensor([ 7549, 4344, 64, 32364, 1259, 20, 13504, 8959, 3868, 2]) | |
| Sentences are being padded to multiples of: 2 | |
filename: /data/data/mlperf/data/transformer/wmt14_en_de/utf8/test1.en-de.en | |
raw_text: False | |
filename: /data/data/mlperf/data/transformer/wmt14_en_de/utf8/test1.de-en.en | |
raw_text: False | |
:::MLL 1596473667.558 block_start: {"value": null, "metadata": {"first_epoch_num": 1, "epoch_count": 1, "file": "train.py", "lineno": 162}} | |
:::MLL 1596473667.559 epoch_start: {"value": null, "metadata": {"epoch_num": 1, "file": "train.py", "lineno": 163}} | |
generated 13089 batches in 2.031663s | |
got epoch iterator 2.032055377960205 | |
| WARNING: overflow detected, setting loss scale to: 64.0 | |
| WARNING: overflow detected, setting loss scale to: 32.0 | |
| WARNING: overflow detected, setting loss scale to: 16.0 | |
| WARNING: overflow detected, setting loss scale to: 8.0 | |
| epoch 001: 1000 / 3273 loss=8.138, nll_loss=0.000, ppl=1.00, wps=160773, ups=4.2, wpb=37457, bsz=1283, num_updates=997, lr=0.00197007, gnorm=77574.494, clip=100%, oom=0, loss_scale=8.000, wall=238 | |
| epoch 001: 2000 / 3273 loss=6.955, nll_loss=0.000, ppl=1.00, wps=160512, ups=4.2, wpb=37442, bsz=1288, num_updates=1997, lr=0.00139829, gnorm=56396.657, clip=100%, oom=0, loss_scale=8.000, wall=471 | |
| WARNING: overflow detected, setting loss scale to: 4.0 | |
| epoch 001: 3000 / 3273 loss=6.418, nll_loss=0.000, ppl=1.00, wps=160372, ups=4.3, wpb=37412, bsz=1296, num_updates=2996, lr=0.00114161, gnorm=43275.777, clip=100%, oom=0, loss_scale=4.000, wall=704 | |
| epoch 001 | loss 6.309 | nll_loss 0.000 | ppl 1.00 | wps 160330 | ups 4.3 | wpb 37406 | bsz 1299 | num_updates 3268 | lr 0.00109306 | gnorm 40648.718 | clip 100% | oom 0 | loss_scale 4.000 | wall 768 | |
epoch time 762.752370595932 | |
:::MLL 1596474432.344 epoch_stop: {"value": null, "metadata": {"epoch_num": 1, "file": "train.py", "lineno": 201}} | |
:::MLL 1596474432.345 eval_start: {"value": null, "metadata": {"epoch_num": 1, "file": "train.py", "lineno": 547}} | |
generated 51 batches in 0.000890s | |
| Translated 816 sentences (21857 tokens) in 10.6s (76.82 sentences/s, 2057.77 tokens/s) | |
| Generate test with beam=4: bleu_score=18.5831 | |
| Eval completed in: 15.62s | |
:::MLL 1596474447.966 eval_stop: {"value": null, "metadata": {"epoch_num": 1, "file": "train.py", "lineno": 658}} | |
:::MLL 1596474447.970 eval_accuracy: {"value": "18.58307123184204", "metadata": {"epoch_num": 1, "file": "train.py", "lineno": 211}} | |
validation and scoring 15.626490831375122 | |
:::MLL 1596474448.014 block_stop: {"value": null, "metadata": {"first_epoch_num": 1, "file": "train.py", "lineno": 226}} | |
:::MLL 1596474448.015 block_start: {"value": null, "metadata": {"first_epoch_num": 2, "epoch_count": 1, "file": "train.py", "lineno": 162}} | |
:::MLL 1596474448.015 epoch_start: {"value": null, "metadata": {"epoch_num": 2, "file": "train.py", "lineno": 163}} | |
generated 13089 batches in 2.050562s | |
got epoch iterator 2.1360983848571777 | |
| epoch 002: 1000 / 3273 loss=4.945, nll_loss=0.000, ppl=1.00, wps=160051, ups=4.0, wpb=37326, bsz=1293, num_updates=4269, lr=0.000956365, gnorm=33791.614, clip=100%, oom=0, loss_scale=8.000, wall=1019 | |
| epoch 002: 2000 / 3273 loss=4.867, nll_loss=0.000, ppl=1.00, wps=160079, ups=4.1, wpb=37365, bsz=1304, num_updates=5269, lr=0.000860841, gnorm=30508.502, clip=100%, oom=0, loss_scale=8.000, wall=1253 | |
| WARNING: overflow detected, setting loss scale to: 4.0 | |
| epoch 002: 3000 / 3273 loss=4.805, nll_loss=0.000, ppl=1.00, wps=160147, ups=4.2, wpb=37406, bsz=1300, num_updates=6268, lr=0.000789264, gnorm=26977.435, clip=100%, oom=0, loss_scale=4.000, wall=1487 | |
| epoch 002 | loss 4.793 | nll_loss 0.000 | ppl 1.00 | wps 160188 | ups 4.2 | wpb 37407 | bsz 1299 | num_updates 6540 | lr 0.000772677 | gnorm 26155.442 | clip 100% | oom 0 | loss_scale 4.000 | wall 1550 | |
epoch time 764.170138835907 | |
:::MLL 1596475214.323 epoch_stop: {"value": null, "metadata": {"epoch_num": 2, "file": "train.py", "lineno": 201}} | |
:::MLL 1596475214.323 eval_start: {"value": null, "metadata": {"epoch_num": 2, "file": "train.py", "lineno": 547}} | |
generated 51 batches in 0.000887s | |
| Translated 816 sentences (23102 tokens) in 10.9s (74.67 sentences/s, 2113.88 tokens/s) | |
| Generate test with beam=4: bleu_score=21.8538 | |
| Eval completed in: 15.71s | |
:::MLL 1596475230.037 eval_stop: {"value": null, "metadata": {"epoch_num": 2, "file": "train.py", "lineno": 658}} | |
:::MLL 1596475230.040 eval_accuracy: {"value": "21.853771805763245", "metadata": {"epoch_num": 2, "file": "train.py", "lineno": 211}} | |
validation and scoring 15.719095230102539 | |
:::MLL 1596475230.085 block_stop: {"value": null, "metadata": {"first_epoch_num": 2, "file": "train.py", "lineno": 226}} | |
:::MLL 1596475230.085 block_start: {"value": null, "metadata": {"first_epoch_num": 3, "epoch_count": 1, "file": "train.py", "lineno": 162}} | |
:::MLL 1596475230.086 epoch_start: {"value": null, "metadata": {"epoch_num": 3, "file": "train.py", "lineno": 163}} | |
generated 13089 batches in 2.044298s | |
got epoch iterator 2.129481554031372 | |
| epoch 003: 1000 / 3273 loss=4.535, nll_loss=0.000, ppl=1.00, wps=160515, ups=4.0, wpb=37430, bsz=1292, num_updates=7541, lr=0.000719569, gnorm=23792.844, clip=100%, oom=0, loss_scale=8.000, wall=1801 | |
| epoch 003: 2000 / 3273 loss=4.528, nll_loss=0.000, ppl=1.00, wps=160300, ups=4.1, wpb=37411, bsz=1295, num_updates=8541, lr=0.000676134, gnorm=22589.425, clip=100%, oom=0, loss_scale=8.000, wall=2035 | |
| WARNING: overflow detected, setting loss scale to: 8.0 | |
| epoch 003: 3000 / 3273 loss=4.517, nll_loss=0.000, ppl=1.00, wps=160201, ups=4.2, wpb=37405, bsz=1298, num_updates=9540, lr=0.000639754, gnorm=21896.716, clip=100%, oom=0, loss_scale=16.000, wall=2268 | |
| WARNING: overflow detected, setting loss scale to: 4.0 | |
| epoch 003 | loss 4.513 | nll_loss 0.000 | ppl 1.00 | wps 160132 | ups 4.2 | wpb 37407 | bsz 1299 | num_updates 9811 | lr 0.000630856 | gnorm 21551.439 | clip 100% | oom 0 | loss_scale 4.000 | wall 2332 | |
epoch time 764.1955001354218 | |
:::MLL 1596475996.412 epoch_stop: {"value": null, "metadata": {"epoch_num": 3, "file": "train.py", "lineno": 201}} | |
:::MLL 1596475996.413 eval_start: {"value": null, "metadata": {"epoch_num": 3, "file": "train.py", "lineno": 547}} | |
generated 51 batches in 0.000853s | |
| Translated 816 sentences (22758 tokens) in 9.8s (82.85 sentences/s, 2310.62 tokens/s) | |
| Generate test with beam=4: bleu_score=23.0341 | |
| Eval completed in: 14.65s | |
:::MLL 1596476011.068 eval_stop: {"value": null, "metadata": {"epoch_num": 3, "file": "train.py", "lineno": 658}} | |
:::MLL 1596476011.071 eval_accuracy: {"value": "23.034103214740753", "metadata": {"epoch_num": 3, "file": "train.py", "lineno": 211}} | |
validation and scoring 14.660557985305786 | |
:::MLL 1596476011.115 block_stop: {"value": null, "metadata": {"first_epoch_num": 3, "file": "train.py", "lineno": 226}} | |
:::MLL 1596476011.116 block_start: {"value": null, "metadata": {"first_epoch_num": 4, "epoch_count": 1, "file": "train.py", "lineno": 162}} | |
:::MLL 1596476011.116 epoch_start: {"value": null, "metadata": {"epoch_num": 4, "file": "train.py", "lineno": 163}} | |
generated 13089 batches in 2.007486s | |
got epoch iterator 2.0928962230682373 | |
| epoch 004: 1000 / 3273 loss=4.408, nll_loss=0.000, ppl=1.00, wps=161118, ups=4.0, wpb=37559, bsz=1296, num_updates=10812, lr=0.000600944, gnorm=20166.925, clip=100%, oom=0, loss_scale=4.000, wall=2582 | |
| epoch 004: 2000 / 3273 loss=4.400, nll_loss=0.000, ppl=1.00, wps=160688, ups=4.1, wpb=37479, bsz=1291, num_updates=11812, lr=0.000574944, gnorm=19094.401, clip=100%, oom=0, loss_scale=8.000, wall=2816 | |
| epoch 004: 3000 / 3273 loss=4.381, nll_loss=0.000, ppl=1.00, wps=160398, ups=4.2, wpb=37441, bsz=1298, num_updates=12812, lr=0.00055205, gnorm=18578.995, clip=100%, oom=0, loss_scale=8.000, wall=3049 | |
| epoch 004 | loss 4.381 | nll_loss 0.000 | ppl 1.00 | wps 160280 | ups 4.2 | wpb 37408 | bsz 1299 | num_updates 13084 | lr 0.000546282 | gnorm 18450.025 | clip 100% | oom 0 | loss_scale 8.000 | wall 3113 | |
epoch time 764.0049517154694 | |
:::MLL 1596476777.215 epoch_stop: {"value": null, "metadata": {"epoch_num": 4, "file": "train.py", "lineno": 201}} | |
:::MLL 1596476777.216 eval_start: {"value": null, "metadata": {"epoch_num": 4, "file": "train.py", "lineno": 547}} | |
generated 51 batches in 0.000880s | |
| Translated 816 sentences (23266 tokens) in 10.8s (75.50 sentences/s, 2152.76 tokens/s) | |
| Generate test with beam=4: bleu_score=23.8039 | |
| Eval completed in: 15.64s | |
:::MLL 1596476792.861 eval_stop: {"value": null, "metadata": {"epoch_num": 4, "file": "train.py", "lineno": 658}} | |
:::MLL 1596476792.865 eval_accuracy: {"value": "23.80388379096985", "metadata": {"epoch_num": 4, "file": "train.py", "lineno": 211}} | |
validation and scoring 15.650740385055542 | |
:::MLL 1596476792.909 block_stop: {"value": null, "metadata": {"first_epoch_num": 4, "file": "train.py", "lineno": 226}} | |
:::MLL 1596476792.910 block_start: {"value": null, "metadata": {"first_epoch_num": 5, "epoch_count": 1, "file": "train.py", "lineno": 162}} | |
:::MLL 1596476792.910 epoch_start: {"value": null, "metadata": {"epoch_num": 5, "file": "train.py", "lineno": 163}} | |
generated 13089 batches in 2.049533s | |
got epoch iterator 2.136399030685425 | |
| epoch 005: 1000 / 3273 loss=4.301, nll_loss=0.000, ppl=1.00, wps=160522, ups=4.0, wpb=37456, bsz=1287, num_updates=14085, lr=0.000526512, gnorm=18367.411, clip=100%, oom=0, loss_scale=16.000, wall=3364 | |
| WARNING: overflow detected, setting loss scale to: 8.0 | |
| WARNING: overflow detected, setting loss scale to: 4.0 | |
| epoch 005: 2000 / 3273 loss=4.299, nll_loss=0.000, ppl=1.00, wps=160286, ups=4.1, wpb=37445, bsz=1294, num_updates=15083, lr=0.000508795, gnorm=18251.750, clip=100%, oom=0, loss_scale=4.000, wall=3598 | |
| epoch 005: 3000 / 3273 loss=4.300, nll_loss=0.000, ppl=1.00, wps=160148, ups=4.2, wpb=37401, bsz=1296, num_updates=16083, lr=0.000492724, gnorm=17491.908, clip=100%, oom=0, loss_scale=4.000, wall=3831 | |
| epoch 005 | loss 4.298 | nll_loss 0.000 | ppl 1.00 | wps 160192 | ups 4.2 | wpb 37409 | bsz 1298 | num_updates 16355 | lr 0.000488609 | gnorm 17302.823 | clip 100% | oom 0 | loss_scale 4.000 | wall 3895 | |
epoch time 763.9332764148712 | |
:::MLL 1596477558.982 epoch_stop: {"value": null, "metadata": {"epoch_num": 5, "file": "train.py", "lineno": 201}} | |
:::MLL 1596477558.983 eval_start: {"value": null, "metadata": {"epoch_num": 5, "file": "train.py", "lineno": 547}} | |
generated 51 batches in 0.000868s | |
| Translated 816 sentences (22549 tokens) in 9.3s (88.15 sentences/s, 2435.95 tokens/s) | |
| Generate test with beam=4: bleu_score=25.0238 | |
| Eval completed in: 14.02s | |
:::MLL 1596477573.008 eval_stop: {"value": null, "metadata": {"epoch_num": 5, "file": "train.py", "lineno": 658}} | |
:::MLL 1596477573.012 eval_accuracy: {"value": "25.023803114891052", "metadata": {"epoch_num": 5, "file": "train.py", "lineno": 211}} | |
validation and scoring 14.031888246536255 | |
:::MLL 1596477573.055 block_stop: {"value": null, "metadata": {"first_epoch_num": 5, "file": "train.py", "lineno": 226}} | |
:::MLL 1596477573.056 run_stop: {"value": null, "metadata": {"status": "success", "file": "train.py", "lineno": 231}} | |
| done training in 3907.1 seconds | |
++ ret_code=0 | |
++ sleep 3 | |
++ [[ 0 != 0 ]] | |
+++ date +%s | |
++ END=1596477577 | |
+++ date '+%Y-%m-%d %r' | |
++ END_FMT='2020-08-03 05:59:37 PM' | |
ENDING TIMING RUN AT 2020-08-03 05:59:37 PM | |
++ echo 'ENDING TIMING RUN AT 2020-08-03 05:59:37 PM' | |
++ RESULT=3926 | |
++ RESULT_NAME=transformer | |
++ echo 'RESULT,transformer,15157,3926,,2020-08-03 04:54:11 PM' | |
RESULT,transformer,15157,3926,,2020-08-03 04:54:11 PM | |
+ set +x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment