Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.

export const requireComment = { | |
meta: { | |
type: "suggestion", | |
docs: { | |
description: "useEffectにはコメントでの説明が必須です。", | |
}, | |
schema: [], | |
messages: { | |
requireCommentOnUseEffect: `useEffectにはコメントでの説明が必須です。 |
""" | |
A minimal, fast example generating text with Llama 3.1 in MLX. | |
To run, install the requirements: | |
pip install -U mlx transformers fire | |
Then generate text with: | |
python l3min.py "How tall is K2?" |
"""QA Chatbot streaming using FastAPI, LangChain Expression Language , OpenAI, and Chroma. | |
Features | |
-------- | |
- Persistent Chat Memory: | |
Stores chat history in a local file. | |
- Persistent Vector Store: | |
Stores document embeddings in a local vector store. | |
- Standalone Question Generation: | |
Rephrases follow-up questions to standalone questions in their original language. |
#!/bin/bash | |
SCRIPTNAME=$(basename "$0") | |
function realpath () { | |
f=$@; | |
if [ -d "$f" ]; then | |
base=""; | |
dir="$f"; | |
else | |
base="/$(basename "$f")"; |
This worked on 14/May/23. The instructions will probably require updating in the future.
llama is a text prediction model similar to GPT-2, and the version of GPT-3 that has not been fine tuned yet. It is also possible to run fine tuned versions (like alpaca or vicuna with this. I think. Those versions are more focused on answering questions)
Note: I have been told that this does not support multiple GPUs. It can only use a single GPU.
It is possible to run LLama 13B with a 6GB graphics card now! (e.g. a RTX 2060). Thanks to the amazing work involved in llama.cpp. The latest change is CUDA/cuBLAS which allows you pick an arbitrary number of the transformer layers to be run on the GPU. This is perfect for low VRAM.
08737ef720f0510c7ec2aa84d7f70c691073c35d
.# follow `ruby.wasm` tutorial
curl -LO https://github.com/ruby/ruby.wasm/releases/latest/download/ruby-head-wasm32-unknown-wasi-full.tar.gz
import { Client } from '../../../src/middleware/client' | |
import type { AppType } from './server' | |
const client = new Client<AppType>('http://127.0.0.1:8787/api') | |
const res = await client.json('/posts', { | |
id: 123, | |
title: 'hello', | |
}) |
const isUseEffect = (node) => node.callee.name === 'useEffect'; | |
const argumentIsArrowFunction = (node) => node.arguments[0].type === 'ArrowFunctionExpression'; | |
const effectBodyIsSingleFunction = (node) => { | |
const { body } = node.arguments[0]; | |
// It's a single unwrapped function call: | |
// `useEffect(() => theNameOfAFunction(), []);` | |
if (body.type === 'CallExpression') { |
// ~/docker/config.json | |
{ | |
"credsStore": "desktop", | |
"credHelpers": { | |
"docker.pkg.github.com": "gh", | |
"ghcr.io": "gh" | |
} | |
} |