Created
December 6, 2016 02:20
-
-
Save mmmayo13/65c01f8dc65e0fcff912095d07f9093f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow.contrib.slim as slim | |
total_layers = 25 #Specify how deep we want our network | |
units_between_stride = total_layers / 5 | |
def denseBlock(input_layer,i,j): | |
with tf.variable_scope("dense_unit"+str(i)): | |
nodes = [] | |
a = slim.conv2d(input_layer,64,[3,3],normalizer_fn=slim.batch_norm) | |
nodes.append(a) | |
for z in range(j): | |
b = slim.conv2d(tf.concat(3,nodes),64,[3,3],normalizer_fn=slim.batch_norm) | |
nodes.append(b) | |
return b | |
tf.reset_default_graph() | |
input_layer = tf.placeholder(shape=[None,32,32,3],dtype=tf.float32,name='input') | |
label_layer = tf.placeholder(shape=[None],dtype=tf.int32) | |
label_oh = slim.layers.one_hot_encoding(label_layer,10) | |
layer1 = slim.conv2d(input_layer,64,[3,3],normalizer_fn=slim.batch_norm,scope='conv_'+str(0)) | |
for i in range(5): | |
layer1 = denseBlock(layer1,i,units_between_stride) | |
layer1 = slim.conv2d(layer1,64,[3,3],stride=[2,2],normalizer_fn=slim.batch_norm,scope='conv_s_'+str(i)) | |
top = slim.conv2d(layer1,10,[3,3],normalizer_fn=slim.batch_norm,activation_fn=None,scope='conv_top') | |
output = slim.layers.softmax(slim.layers.flatten(top)) | |
loss = tf.reduce_mean(-tf.reduce_sum(label_oh * tf.log(output) + 1e-10, reduction_indices=[1])) | |
trainer = tf.train.AdamOptimizer(learning_rate=0.001) | |
update = trainer.minimize(loss) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment