Last active
October 28, 2016 19:20
-
-
Save mmmikael/cc895249e7941c2f56b3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import print_function | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.utils import np_utils | |
from scipy.special import expit | |
import numpy as np | |
np.set_printoptions(suppress=True) | |
np.set_printoptions(precision=6) | |
''' | |
Train a simple convnet on the MNIST dataset. | |
Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python mnist_cnn.py | |
Get to 99.25% test accuracy after 12 epochs (there is still a lot of margin for parameter tuning). | |
16 seconds per epoch on a GRID K520 GPU. | |
''' | |
TRAIN = True | |
batch_size = 128 | |
nb_classes = 10 | |
nb_epoch = 5 | |
# the data, shuffled and split between tran and test sets | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28) | |
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28) | |
X_train = X_train.astype("float32") | |
X_test = X_test.astype("float32") | |
X_train /= 255 | |
X_test /= 255 | |
print('X_train shape:', X_train.shape) | |
print(X_train.shape[0], 'train samples') | |
print(X_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
model = Sequential() | |
model.add(Convolution2D(32, 1, 3, 3, border_mode='valid')) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(32, 32, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(poolsize=(2, 2))) | |
model.add(Dropout(0.25)) | |
model.add(Convolution2D(128, 32, 12, 12)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Convolution2D(nb_classes, 128, 1, 1)) | |
model.add(Flatten()) | |
model.add(Activation('sigmoid')) | |
model.compile(loss='categorical_crossentropy', optimizer='adadelta') | |
if TRAIN: | |
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=1, validation_data=(X_test, Y_test)) | |
score = model.evaluate(X_test, Y_test, show_accuracy=True, verbose=0) | |
print('Test score:', score[0]) | |
print('Test accuracy:', score[1]) | |
model.save_weights('/tmp/model_weights.hdf5', overwrite=True) | |
else: | |
model.load_weights('/tmp/model_weights.hdf5') | |
# create mosaic image with twice the same digit | |
data = np.zeros([1,1,28, 28*2], 'float32') | |
data[0,0,:,:28] = X_train[0,0,:,:] | |
data[0,0,:,28:] = X_train[0,0,:,:] | |
print('real label: %d' % y_train[0]) | |
r0 = (model.predict(data[:,:,:,:28])).ravel() | |
print('expected result (centered):', r0, '(label=%d)' % np.argmax(r0)) | |
pred = model.predict(data).ravel() | |
pred = pred.reshape(nb_classes, len(pred)/nb_classes).T | |
for i,p in enumerate(pred): | |
print('pos:%02d' % i, p, '(label=%d)' % np.argmax(p)) |
Hi Guy,
It is indeed useless here, used in other parts of our library, left by mistake.
Victor
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
What's this import for?
Doesn't seem to get used anywhere...
Sorry for the n00b question, but I'm new to both Keras and ANNs but not to Python, so this is a shallow question but would help me understand one more bit...