Last active
September 16, 2017 02:27
-
-
Save mmuratarat/14f306c4e2697ef68d64150e1b930964 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
GradientDescent <- function(data, alpha, iteration, epsilon){ | |
data <- matrix(unlist(data), ncol=ncol(data), byrow=FALSE) | |
# bagimli degiskeni ve bagimsiz degiskenleri ayiralim. | |
#Veridaki en son kolon, bagimli degiskene ait olmalidir. | |
independent.variable<- data[,1:ncol(data)-1] | |
dependent.variable<- data[,ncol(data)] | |
# girdi degiskenlerine z-değeri normalleştirmesi uygulayalim. | |
# Her degiskene ait ortalama ve standart sapma bilgisini kaydedelim. | |
normalized <- function(x) ( x - mean(x) ) / sd(x) | |
independent.variable.mean <- apply(independent.variable, 2, mean) | |
independent.variable.sd <- apply(independent.variable, 2, sd) | |
independent.variable <- apply(independent.variable, 2,normalized) | |
# Sabit terimi (theta0) hesaplayabilmek icin bagimsiz degiskenlerden olusan matrise | |
#1'lerden olusan bir kolon ekleyelim. | |
independent.variable <- cbind(theta0 = 1, independent.variable) | |
# theta_new : baslangic degerleri | |
# theta_old | |
theta_new <- matrix( 1, ncol = ncol(independent.variable)) | |
theta_old <- matrix( 2, ncol = ncol(independent.variable)) | |
#Maliyet fonksiyonu | |
CostFunction <- function (independent.variable, dependent.variable, theta){ | |
1/(2*(NROW(dependent.variable))) * sum(((independent.variable %*% t(theta)) - dependent.variable)^2); | |
} | |
# her iterasyondaki theta degerlerini ve bu degerlere kasilik gelen maliyet | |
#fonksiyonu degerlerini kaydedelim. Bu iki vektorun ilk degelerini atayalim. | |
thetas <- vector( mode = "list", length = iteration ) | |
thetas[[1]] <- theta_new | |
J <- numeric( length = iteration ) | |
J[1] <- CostFunction(independent.variable, dependent.variable, theta_old ) | |
#Gradyan inis algoritmasindaki kismi turev islemini yapan fonksiyon | |
derivative <- function(independent.variable, dependent.variable, theta) | |
{ | |
descent <- (t(independent.variable) %*% ((independent.variable %*% t(theta)) - dependent.variable))/ NROW(dependent.variable) | |
return( t(descent) ) | |
} | |
#Durdurma kriterlerini tanımlayalım. | |
step <- 1 | |
while(any(abs(theta_new - theta_old) > epsilon) & step <= iteration ) | |
{ | |
step <- step + 1 | |
# gradient descent | |
theta_old <- theta_new | |
theta_new <- theta_old - alpha * derivative(independent.variable, dependent.variable, theta_old) | |
# record keeping | |
thetas[[step]] <- theta_new | |
J[step] <- CostFunction(independent.variable, dependent.variable, theta_new) | |
} | |
# Sonuclari yazdiralim. | |
costs <- data.frame( costs = J ) | |
theta <- data.frame( do.call( rbind, thetas ), row.names = NULL ) | |
norm <- data.frame( input_mean = independent.variable.mean, input_sd = independent.variable.sd) | |
return( list( costs = costs, theta = theta, norm = norm)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment