Paper: Markov Chain Monte Carlo Methods for State-Space Models with Point Process Observations
- P(Y_k | X_k, mu, beta) ~ Poisson(lambda_k)
- lambda_k = exp(mu + beta*X_k)
- x_k = px_{k-1} + alphaI_k + e_k
where e_k normally distributed with zero mean and known variance; also, I, alpha, and beta are known.
Parameters to fit: X, p, mu, alpha
- X | Y, p, mu, alpha = FFBS (?)
- (p, alpha) | Y, X, mu = lin reg
- lambda | Y, X, p, alpha ≈ P(Y | lambda)*P(lambda)
- mu | Y, X, p, alpha = ?
[lambda | ...]
Choose P(lambda) as Gamma, the conjugate prior of Poisson.
Given gamma prior on lambda, and poisson likelihood, P(lambda | Y) ≈ P(Y | lambda)*P(lambda) = gamma.
This means I can draw a full lambda given Y by drawing from this lambda I think?
[mu | lambda, ...]
log(lambda_k) = mu + betaX_k => mu = log(lambda_k) - betaX_k