Created
July 25, 2020 05:45
-
-
Save mohcinemadkour/8fa1925dcb4e65458444f9f325f439f1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### Below is training code, uncomment to train your own model... ### | |
### Note: You need GPU and CUDA to run this section ### | |
''' | |
# Define networks | |
lenet1 = [LeNetClassifier(droprate=0, max_epoch=1500), | |
LeNetClassifier(droprate=0.5, max_epoch=1500)] | |
# Training, set verbose=True to see loss after each epoch. | |
[lenet.fit(trainset, testset,verbose=False) for lenet in lenet1] | |
# Save torch models | |
for ind, lenet in enumerate(lenet1): | |
torch.save(lenet.model, 'mnist_lenet1_'+str(ind)+'.pth') | |
# Prepare to save errors | |
lenet.test_error = list(map(str, lenet.test_error)) | |
# Save test errors to plot figures | |
open("lenet1_test_errors.txt","w").write('\n'.join([','.join(lenet.test_error) for lenet in lenet1])) | |
''' | |
# Load saved models to CPU | |
lenet1_models = [torch.load('mnist_lenet1_'+str(ind)+'.pth', map_location={'cuda:0': 'cpu'}) for ind in [0,1]] | |
# Load saved test errors to plot figures. | |
lenet1_test_errors = [error_array.split(',') for error_array in | |
open("lenet1_test_errors.txt","r").read().split('\n')] | |
lenet1_test_errors = np.array(lenet1_test_errors,dtype='f') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment