Created
July 25, 2020 05:36
-
-
Save mohcinemadkour/b5eefae6de4767a1662054876632191a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hidden_layers = [800, 800] | |
### Below is training code, uncomment to train your own model... ### | |
### Note: You need GPU to run this section ### | |
''' | |
# Define networks | |
mlp1 = [MLPClassifier(hidden_layers, droprates=[0, 0], max_epoch=1500), | |
MLPClassifier(hidden_layers, droprates=[0, 0.5], max_epoch=1500), | |
MLPClassifier(hidden_layers, droprates=[0.2, 0.5], max_epoch=1500)] | |
# Training, set verbose=True to see loss after each epoch. | |
[mlp.fit(trainset, testset,verbose=False) for mlp in mlp1] | |
# Save torch models | |
for ind, mlp in enumerate(mlp1): | |
torch.save(mlp.model, 'mnist_mlp1_'+str(ind)+'.pth') | |
# Prepare to save errors | |
mlp.test_error = list(map(str, mlp.test_error)) | |
# Save test errors to plot figures | |
open("mlp1_test_errors.txt","w").write('\n'.join([','.join(mlp.test_error) for mlp in mlp1])) | |
''' | |
# Load saved models to CPU | |
mlp1_models = [torch.load('mnist_mlp1_'+str(ind)+'.pth',map_location={'cuda:0': 'cpu'}) for ind in [0,1,2]] | |
# Load saved test errors to plot figures. | |
mlp1_test_errors = [error_array.split(',') for error_array in open("mlp1_test_errors.txt","r").read().split('\n')] | |
mlp1_test_errors = np.array(mlp1_test_errors,dtype='f') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment