Created
January 20, 2021 18:37
-
-
Save momvart/ed113320c5a36191f00173f9c39cd14d to your computer and use it in GitHub Desktop.
Implementation of Gaussian Mixture Models clustering using numpy and scipy.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy.random import choice | |
from numpy.linalg import norm | |
from scipy.stats import multivariate_normal | |
def train_gmm(data, k, convergence_threshold): | |
raw_data = data | |
data = pd.DataFrame(data) # Should be removed | |
feature_columns = data.columns | |
pis = np.ones((k, 1)) * 1 / k | |
mus = X[np.random.choice(len(X), size=k, replace=False), :] | |
sigmas = np.repeat(np.eye(len(feature_columns))[np.newaxis, :, :] * 0.1, k, axis=0) | |
N = len(raw_data) | |
log_likelihood = -1000 | |
change = 10000 | |
while change > convergence_threshold: | |
# E step | |
probabilities = np.array([multivariate_normal.pdf(raw_data, mu, sigma) for mu, sigma in zip(mus, sigmas)]) | |
probabilities *= pis | |
assert probabilities.shape == (k, N) | |
gammas = probabilities / np.sum(probabilities, axis=0, keepdims=True) | |
assert gammas.shape == (k, N) | |
gamma_sums = np.sum(gammas, axis=1, keepdims=True) | |
assert gamma_sums.shape == (k, 1) | |
# M step | |
# shape: (k, n) @ (n, f) = (k, f) | |
mus = (gammas @ raw_data) / gamma_sums | |
assert mus.shape == (k, len(feature_columns)) | |
sigmas = np.array([1 / gamma_sums[i] * (gammas[i] * (raw_data - mus[i]).T) @ (raw_data - mus[i]) for i in range(k)]) | |
assert sigmas.shape == (k, len(feature_columns), len(feature_columns)) | |
pis = gamma_sums / np.sum(gamma_sums) | |
assert np.abs(np.sum(pis) - 1) < 1e-6 | |
log_likelihood_new = np.sum(np.log(np.sum(probabilities, axis=0))) | |
change = np.abs(log_likelihood_new - log_likelihood) | |
log_likelihood = log_likelihood_new | |
return pis, mus, sigmas | |
def predict_gmm(data, mus, sigmas): | |
probabilities = np.array([multivariate_normal.pdf(data, mu, sigma) for mu, sigma in zip(mus, sigmas)]) | |
return np.argmax(probabilities, axis=0) | |
# Example | |
from sklearn.datasets import make_classification | |
X, Y = make_classification(n_samples=700, n_features=2, | |
n_informative=2, n_redundant=0, | |
n_classes=2) | |
weights, means, covars = train_gmm(X, 2, 0.1) | |
gmm_pred = predict_gmm(X, means, covars) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment