Created
October 11, 2019 00:37
-
-
Save monochromegane/13123f681db5cf376e79b854cfdec5ba to your computer and use it in GitHub Desktop.
Plot random number histogram and PDF(PMF) according the distribution.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import math | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def plot_exp_pdf(ax, lambda_): | |
def exp(lam, x): | |
if (x >= 0): | |
return lam * np.exp(-lam * x) | |
return 0 | |
xs = np.linspace(0, 20, 2_000) | |
ys = [exp(lambda_, x) for x in xs] | |
ax.plot(xs, ys, color='C1', label=r'Exponential PDF $\lambda={}$'.format(lambda_)) | |
ax.set_ylim(0.0) | |
def plot_poisson_pmf(ax, lambda_): | |
def poisson(lam, k): | |
return pow(lam, k) * np.exp(-lam) / math.gamma(k+1) | |
xs = range(21) | |
ys = [poisson(lambda_, x) for x in xs] | |
ax.stem(xs, ys, label=r'Poisson PMF $\lambda={}$'.format(lambda_), markerfmt='C1o', linefmt='C1-') | |
ax.set_ylim(0.0) | |
def plot_erlang_kl_pdf(ax, lambda_, k): | |
def erlang(lam, k, x): | |
return pow(lam, k) * pow(x, k-1) * math.exp(-lam * x) / math.gamma(k) | |
xs = np.linspace(0, 20, 2_000) | |
ys = [erlang(lambda_, k, x) for x in xs] | |
ax.plot(xs, ys, color='C1', label=r'Erlang($E[x]=k/\lambda$) PDF $k={}$, $\lambda={}$'.format(k, lambda_)) | |
ax.set_ylim(0.0) | |
def plot_erlang_1l_pdf(ax, lambda_, k): | |
def erlang(lam, k, x): | |
return pow(k*lam, k) * pow(x, k-1) * math.exp(-lam * k * x) / math.gamma(k) | |
xs = np.linspace(0, 20, 2_000) | |
ys = [erlang(lambda_, k, x) for x in xs] | |
ax.plot(xs, ys, color='C1', label=r'Erlang($E[x]=1/\lambda$) PDF $k={}$, $\lambda={}$'.format(k, lambda_)) | |
ax.set_ylim(0.0) | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--dist') | |
parser.add_argument('-l', '--lambda_', type=float, default=1.0) | |
parser.add_argument('-k', '--shape', type=int, default=1) | |
parser.add_argument('-e', '--expectation', default='') | |
args = parser.parse_args() | |
_, ax1 = plt.subplots() | |
ax2 = ax1.twinx() | |
xs = np.loadtxt('data.txt') | |
ax1.hist(xs, align="left", label='Count', bins=20, range=(0, 20)) | |
if args.dist == 'exponential': | |
plot_exp_pdf(ax2, args.lambda_) | |
elif args.dist == 'poisson': | |
plot_poisson_pmf(ax2, args.lambda_) | |
elif args.dist == 'erlang': | |
if args.expectation == 'k/l': # E[x] = k/lambda | |
plot_erlang_kl_pdf(ax2, args.lambda_, args.shape) | |
elif args.expectation == '1/l': # E[x] = 1/lambda | |
plot_erlang_1l_pdf(ax2, args.lambda_, args.shape) | |
plt.title('{}'.format(args.dist)) | |
plt.legend() | |
plt.savefig('hist_and_p{}f_{}.png'.format('m' if args.dist == 'poisson' else 'd', args.dist + args.expectation.replace('/', ''))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment