Last active
December 11, 2021 10:02
-
-
Save monogenea/a574e495db145564d5002a849709aa7f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Sun Nov 14 20:13:12 2021 ------------------------------ | |
# Logistic regression mtcars | |
library(RColorBrewer) | |
data("mtcars") | |
# Determine number of iterations | |
niter <- 100 | |
# Determine learning rate / step size | |
alpha <- 1e-5 | |
set.seed(1) | |
b0 <- rnorm(1) # intercept | |
b1 <- rnorm(1) # slope1 | |
b2 <- rnorm(1) # slope2 | |
# Set palette | |
cols <- colorRampPalette(rev(brewer.pal(n = 7, name = "RdBu")))(niter) | |
# Plot | |
layout(matrix(c(1,1,2,2,3), nrow = 1, ncol = 5)) | |
plot(mpg ~ hp, data = mtcars, pch = 16, | |
xlab = "Horsepower", ylab = "Miles per gallon (mpg)", | |
col = ifelse(mtcars$vs, rgb(0,0,1,.5), rgb(1,0,0,.5))) | |
legend("topright", legend = c("Straight", "V-shaped"), | |
col = c(rgb(0,0,1,.5), rgb(1,0,0,.5)), pch = 16, | |
bty = "n") | |
# Perform gradient descent | |
slopes1 <- rep(NA, niter) | |
slopes2 <- rep(NA, niter) | |
intercepts <- rep(NA, niter) | |
for(i in 1:niter){ | |
# prediction | |
logit <- b0 + b1 * mtcars$mpg + b2 * mtcars$hp | |
y <- 1 / (1 + exp(-logit)) | |
# b0 = b0 - dJ/da * alpha | |
b0 <- b0 - sum(y - mtcars$vs) * alpha | |
# b1 = b1 - dJ/db * alpha | |
b1 <- b1 - sum((y - mtcars$vs) * mtcars$mpg) * alpha | |
# b2 = b2 - dJ/db * alpha | |
b2 <- b2 - sum((y - mtcars$vs) * mtcars$hp) * alpha | |
# Solve for b0 + b1 * mtcars$mpg + b2 * mtcars$hp = 0 | |
# mtcars$mpg = -(b2 * mtcars$hp + b0) / b1 | |
db_points <- -(b2 * c(40, 400) + b0) / b1 | |
# Plot decision boundary | |
lines(c(40, 400), db_points, col = cols[i], lty = 2) | |
# Save estimates over all iterations | |
intercepts[i] <- b0 | |
slopes1[i] <- b1 | |
slopes2[i] <- b2 | |
} | |
title("Decision Boundary") | |
plot(x=1:niter, intercepts, type = "l", lty=1, | |
ylim = c(-1, 1), xlab = "Iteration No.", ylab = "Coefficient value") | |
abline(h = 0, lty = 2, col="grey") | |
lines(x=1:niter, slopes1, lty=3) | |
lines(x=1:niter, slopes2, lty=4) | |
legend("topright", | |
legend = c(expression(beta[0]), | |
expression(beta[1]), | |
expression(beta[2])), | |
lty = c(1, 3, 4), | |
bty = "n") | |
title("Coefficient Estimation") | |
# Add colorbar | |
z = matrix(1:niter, nrow = 1) | |
image(1, 1:niter, z, | |
col = cols, axes = FALSE, xlab = "", ylab = "") | |
title("Iteration No.") | |
axis(2, at = c(1, seq(20, niter, by=20))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment