Skip to content

Instantly share code, notes, and snippets.

@monotykamary
Last active May 24, 2025 09:44
Show Gist options
  • Save monotykamary/19d759dcb2ecf236db1c9c4cb659d210 to your computer and use it in GitHub Desktop.
Save monotykamary/19d759dcb2ecf236db1c9c4cb659d210 to your computer and use it in GitHub Desktop.
Open WebUI Anthropic with Prompt Caching
"""
title: Anthropic Manifold Pipe
authors: monotykamary
author_url: https://github.com/monotykamary
funding_url: https://github.com/open-webui
version: 0.2.6
required_open_webui_version: 0.3.17
license: MIT
"""
import os
import requests
import json
import time
from typing import List, Union, Generator, Iterator
from pydantic import BaseModel, Field
from open_webui.utils.misc import pop_system_message
class Pipe:
class Valves(BaseModel):
ANTHROPIC_API_KEY: str = Field(default="")
def __init__(self):
self.type = "manifold"
self.id = "anthropic"
self.name = "anthropic/"
self.valves = self.Valves(
**{"ANTHROPIC_API_KEY": os.getenv("ANTHROPIC_API_KEY", "")}
)
pass
def get_anthropic_models(self):
return [
{"id": "claude-3-haiku-20240307", "name": "claude-3-haiku"},
{"id": "claude-3-opus-20240229", "name": "claude-3-opus"},
{"id": "claude-3-sonnet-20240229", "name": "claude-3-sonnet"},
{"id": "claude-3-5-haiku-20241022", "name": "claude-3.5-haiku"},
{"id": "claude-3-5-sonnet-20240620", "name": "claude-3.5-sonnet"},
{"id": "claude-3-5-sonnet-20241022", "name": "claude-3.5-sonnet-v2"},
{"id": "claude-3-7-sonnet-20250219", "name": "claude-3.7-sonnet"},
{"id": "claude-sonnet-4-20250514", "name": "claude-sonnet-4"},
{"id": "claude-opus-4-20250514", "name": "claude-opus-4"},
]
def pipes(self) -> List[dict]:
return self.get_anthropic_models()
def process_image(self, image_data):
if image_data["image_url"]["url"].startswith("data:image"):
mime_type, base64_data = image_data["image_url"]["url"].split(",", 1)
media_type = mime_type.split(":")[1].split(";")[0]
return {
"type": "image",
"source": {
"type": "base64",
"media_type": media_type,
"data": base64_data,
},
}
else:
return {
"type": "image",
"source": {"type": "url", "url": image_data["image_url"]["url"]},
}
def pipe(self, body: dict) -> Union[str, Generator, Iterator]:
system_message, messages = pop_system_message(body["messages"])
processed_messages = []
image_count = 0
total_image_size = 0
# Find indices of last three user messages
lastThreeUserMsgIndices = [
i for i, msg in enumerate(messages) if msg["role"] == "user"
][-3:]
# Process system message
processed_system = []
if system_message:
processed_system.append(
{
"type": "text",
"text": str(system_message),
"cache_control": {"type": "ephemeral"},
}
)
# Process user messages
for i, message in enumerate(messages):
processed_content = []
is_last_message = i == len(messages) - 1
if isinstance(message.get("content"), list):
for item in message["content"]:
if item["type"] == "text":
text_content = {"type": "text", "text": item["text"]}
if message["role"] == "user" and i in lastThreeUserMsgIndices:
text_content["cache_control"] = {"type": "ephemeral"}
processed_content.append(text_content)
elif item["type"] == "image_url":
if image_count >= 5:
raise ValueError(
"Maximum of 5 images per API call exceeded"
)
processed_image = self.process_image(item)
processed_content.append(processed_image)
if processed_image["source"]["type"] == "base64":
image_size = len(processed_image["source"]["data"]) * 3 / 4
else:
image_size = 0
total_image_size += image_size
if total_image_size > 100 * 1024 * 1024:
raise ValueError(
"Total size of images exceeds 100 MB limit"
)
image_count += 1
else:
text_content = {"type": "text", "text": message.get("content", "")}
if message["role"] == "user" and i in lastThreeUserMsgIndices:
text_content["cache_control"] = {"type": "ephemeral"}
processed_content = [text_content]
processed_messages.append(
{"role": message["role"], "content": processed_content}
)
payload = {
"model": body["model"][body["model"].find(".") + 1 :],
"messages": processed_messages,
"max_tokens": body.get("max_tokens", 4096),
"temperature": body.get("temperature", 0.8),
"top_k": body.get("top_k", 40),
"top_p": body.get("top_p", 0.9),
"stop_sequences": body.get("stop", []),
"system": processed_system,
"stream": body.get("stream", False),
}
headers = {
"x-api-key": self.valves.ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01",
"anthropic-beta": "prompt-caching-2024-07-31",
"content-type": "application/json",
}
url = "https://api.anthropic.com/v1/messages"
try:
if body.get("stream", False):
return self.stream_response(url, headers, payload)
else:
return self.non_stream_response(url, headers, payload)
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
return f"Error: Request failed: {e}"
except Exception as e:
print(f"Error in pipe method: {e}")
return f"Error: {e}"
def stream_response(self, url, headers, payload):
try:
with requests.post(
url, headers=headers, json=payload, stream=True, timeout=(3.05, 60)
) as response:
if response.status_code != 200:
raise Exception(
f"HTTP Error {response.status_code}: {response.text}"
)
for line in response.iter_lines():
if line:
line = line.decode("utf-8")
if line.startswith("data: "):
try:
data = json.loads(line[6:])
if data["type"] == "content_block_start":
yield data["content_block"]["text"]
elif data["type"] == "content_block_delta":
yield data["delta"]["text"]
elif data["type"] == "message_stop":
break
elif data["type"] == "message":
for content in data.get("content", []):
if content["type"] == "text":
yield content["text"]
# Delay to avoid overwhelming the client
time.sleep(0.01)
except json.JSONDecodeError:
print(f"Failed to parse JSON: {line}")
except KeyError as e:
print(f"Unexpected data structure: {e}")
print(f"Full data: {data}")
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
yield f"Error: Request failed: {e}"
except Exception as e:
print(f"General error in stream_response method: {e}")
yield f"Error: {e}"
def non_stream_response(self, url, headers, payload):
try:
response = requests.post(
url, headers=headers, json=payload, timeout=(3.05, 60)
)
if response.status_code != 200:
raise Exception(f"HTTP Error {response.status_code}: {response.text}")
res = response.json()
return (
res["content"][0]["text"] if "content" in res and res["content"] else ""
)
except requests.exceptions.RequestException as e:
print(f"Failed non-stream request: {e}")
return f"Error: {e}"
"""
title: Anthropic Manifold Pipe
authors: monotykamary
author_url: https://github.com/monotykamary
funding_url: https://github.com/open-webui
version: 0.2.6
required_open_webui_version: 0.3.17
license: MIT
"""
import os
import requests
import json
import time
from typing import List, Union, Generator, Iterator
from pydantic import BaseModel, Field
from open_webui.utils.misc import pop_system_message
class Pipe:
class Valves(BaseModel):
ANTHROPIC_API_KEY: str = Field(default="")
def __init__(self):
self.type = "manifold"
self.id = "anthropic"
self.name = "anthropic/"
self.valves = self.Valves(
**{"ANTHROPIC_API_KEY": os.getenv("ANTHROPIC_API_KEY", "")}
)
pass
def get_anthropic_models(self):
return [
{"id": "claude-3-haiku-20240307", "name": "claude-3-haiku"},
{"id": "claude-3-opus-20240229", "name": "claude-3-opus"},
{"id": "claude-3-sonnet-20240229", "name": "claude-3-sonnet"},
{"id": "claude-3-5-haiku-20241022", "name": "claude-3.5-haiku"},
{"id": "claude-3-5-sonnet-20240620", "name": "claude-3.5-sonnet"},
{"id": "claude-3-5-sonnet-20241022", "name": "claude-3.5-sonnet-v2"},
{"id": "claude-3-7-sonnet-20250219", "name": "claude-3.7-sonnet"},
{"id": "claude-sonnet-4-20250514", "name": "claude-sonnet-4"},
{"id": "claude-opus-4-20250514", "name": "claude-opus-4"},
]
def pipes(self) -> List[dict]:
return self.get_anthropic_models()
def process_image(self, image_data):
if image_data["image_url"]["url"].startswith("data:image"):
mime_type, base64_data = image_data["image_url"]["url"].split(",", 1)
media_type = mime_type.split(":")[1].split(";")[0]
return {
"type": "image",
"source": {
"type": "base64",
"media_type": media_type,
"data": base64_data,
},
}
else:
return {
"type": "image",
"source": {"type": "url", "url": image_data["image_url"]["url"]},
}
def pipe(self, body: dict) -> Union[str, Generator, Iterator]:
system_message, messages = pop_system_message(body["messages"])
processed_messages = []
image_count = 0
total_image_size = 0
# Find indices of last two user messages
lastTwoUserMsgIndices = [
i for i, msg in enumerate(messages) if msg["role"] == "user"
][-2:]
# Process system message
processed_system = []
if system_message:
processed_system.append({
"type": "text",
"text": str(system_message),
"cache_control": {"type": "ephemeral"}
})
# Process user messages
for i, message in enumerate(messages):
processed_content = []
is_last_message = i == len(messages) - 1
if isinstance(message.get("content"), list):
for item in message["content"]:
if item["type"] == "text":
text_content = {"type": "text", "text": item["text"]}
if message["role"] == "user" and i in lastTwoUserMsgIndices:
text_content["cache_control"] = {"type": "ephemeral"}
processed_content.append(text_content)
elif item["type"] == "image_url":
if image_count >= 5:
raise ValueError("Maximum of 5 images per API call exceeded")
processed_image = self.process_image(item)
processed_content.append(processed_image)
if processed_image["source"]["type"] == "base64":
image_size = len(processed_image["source"]["data"]) * 3 / 4
else:
image_size = 0
total_image_size += image_size
if total_image_size > 100 * 1024 * 1024:
raise ValueError("Total size of images exceeds 100 MB limit")
image_count += 1
else:
text_content = {"type": "text", "text": message.get("content", "")}
if message["role"] == "user" and i in lastTwoUserMsgIndices:
text_content["cache_control"] = {"type": "ephemeral"}
processed_content = [text_content]
processed_messages.append({
"role": message["role"],
"content": processed_content
})
payload = {
"model": body["model"][body["model"].find(".") + 1 :],
"messages": processed_messages,
"max_tokens": body.get("max_tokens", 4096),
"temperature": body.get("temperature", 0.8),
"top_k": body.get("top_k", 40),
"top_p": body.get("top_p", 0.9),
"stop_sequences": body.get("stop", []),
"system": processed_system,
"stream": body.get("stream", False),
}
headers = {
"x-api-key": self.valves.ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01",
"anthropic-beta": "prompt-caching-2024-07-31",
"content-type": "application/json",
}
url = "https://api.anthropic.com/v1/messages"
try:
if body.get("stream", False):
return self.stream_response(url, headers, payload)
else:
return self.non_stream_response(url, headers, payload)
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
return f"Error: Request failed: {e}"
except Exception as e:
print(f"Error in pipe method: {e}")
return f"Error: {e}"
def stream_response(self, url, headers, payload):
try:
with requests.post(
url, headers=headers, json=payload, stream=True, timeout=(3.05, 60)
) as response:
if response.status_code != 200:
raise Exception(
f"HTTP Error {response.status_code}: {response.text}"
)
for line in response.iter_lines():
if line:
line = line.decode("utf-8")
if line.startswith("data: "):
try:
data = json.loads(line[6:])
if data["type"] == "content_block_start":
yield data["content_block"]["text"]
elif data["type"] == "content_block_delta":
yield data["delta"]["text"]
elif data["type"] == "message_stop":
break
elif data["type"] == "message":
for content in data.get("content", []):
if content["type"] == "text":
yield content["text"]
# Delay to avoid overwhelming the client
time.sleep(0.01)
except json.JSONDecodeError:
print(f"Failed to parse JSON: {line}")
except KeyError as e:
print(f"Unexpected data structure: {e}")
print(f"Full data: {data}")
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
yield f"Error: Request failed: {e}"
except Exception as e:
print(f"General error in stream_response method: {e}")
yield f"Error: {e}"
def non_stream_response(self, url, headers, payload):
try:
response = requests.post(
url, headers=headers, json=payload, timeout=(3.05, 60)
)
if response.status_code != 200:
raise Exception(f"HTTP Error {response.status_code}: {response.text}")
res = response.json()
return (
res["content"][0]["text"] if "content" in res and res["content"] else ""
)
except requests.exceptions.RequestException as e:
print(f"Failed non-stream request: {e}")
return f"Error: {e}"
"""
title: Anthropic Manifold Pipe
authors: monotykamary
author_url: https://github.com/monotykamary
funding_url: https://github.com/open-webui
version: 0.2.6
required_open_webui_version: 0.3.17
license: MIT
"""
import os
import requests
import json
import time
from typing import List, Union, Generator, Iterator
from pydantic import BaseModel, Field
from open_webui.utils.misc import pop_system_message
def estimate_tokens(text: str) -> int:
# A simple estimation: roughly 4 characters per token
return len(text) // 4
class Pipe:
class Valves(BaseModel):
ANTHROPIC_API_KEY: str = Field(default="")
def __init__(self):
self.type = "manifold"
self.id = "anthropic"
self.name = "anthropic/"
self.valves = self.Valves(
**{"ANTHROPIC_API_KEY": os.getenv("ANTHROPIC_API_KEY", "")}
)
pass
def get_anthropic_models(self):
return [
{"id": "claude-3-haiku-20240307", "name": "claude-3-haiku"},
{"id": "claude-3-opus-20240229", "name": "claude-3-opus"},
{"id": "claude-3-sonnet-20240229", "name": "claude-3-sonnet"},
{"id": "claude-3-5-haiku-20241022", "name": "claude-3.5-haiku"},
{"id": "claude-3-5-sonnet-20240620", "name": "claude-3.5-sonnet"},
{"id": "claude-3-5-sonnet-20241022", "name": "claude-3.5-sonnet-v2"},
{"id": "claude-3-7-sonnet-20250219", "name": "claude-3.7-sonnet"},
{"id": "claude-sonnet-4-20250514", "name": "claude-sonnet-4"},
{"id": "claude-opus-4-20250514", "name": "claude-opus-4"},
]
def pipes(self) -> List[dict]:
return self.get_anthropic_models()
def process_image(self, image_data):
if image_data["image_url"]["url"].startswith("data:image"):
mime_type, base64_data = image_data["image_url"]["url"].split(",", 1)
media_type = mime_type.split(":")[1].split(";")[0]
return {
"type": "image",
"source": {
"type": "base64",
"media_type": media_type,
"data": base64_data,
},
}
else:
return {
"type": "image",
"source": {"type": "url", "url": image_data["image_url"]["url"]},
}
def pipe(self, body: dict) -> Union[str, Generator, Iterator]:
system_message, messages = pop_system_message(body["messages"])
processed_messages = []
image_count = 0
total_image_size = 0
cache_control_count = 0 # Add counter for cache control blocks
# Process system message
processed_system = []
if system_message:
processed_system.append({
"type": "text",
"text": str(system_message),
"cache_control": {"type": "ephemeral"}
})
cache_control_count += 1 # Increment counter for system message
# Estimate tokens for each message, excluding the last one
message_sizes = [
(i, estimate_tokens(str(m.get("content", ""))))
for i, m in enumerate(messages[:-1])
]
message_sizes.sort(key=lambda x: x[1], reverse=True)
# Select top 3 largest messages for caching
to_cache = set(x[0] for x in message_sizes[:3])
# Process user messages
for i, message in enumerate(messages):
processed_content = []
is_last_message = i == len(messages) - 1
if isinstance(message.get("content"), list):
for item in message["content"]:
if item["type"] == "text":
text_content = {"type": "text", "text": item["text"]}
# Only add cache_control if we haven't reached the limit
if not is_last_message and i in to_cache and cache_control_count < 4:
text_content["cache_control"] = {"type": "ephemeral"}
cache_control_count += 1
processed_content.append(text_content)
elif item["type"] == "image_url":
if image_count >= 5:
raise ValueError("Maximum of 5 images per API call exceeded")
processed_image = self.process_image(item)
processed_content.append(processed_image)
if processed_image["source"]["type"] == "base64":
image_size = len(processed_image["source"]["data"]) * 3 / 4
else:
image_size = 0
total_image_size += image_size
if total_image_size > 100 * 1024 * 1024:
raise ValueError("Total size of images exceeds 100 MB limit")
image_count += 1
else:
text_content = {"type": "text", "text": message.get("content", "")}
if not is_last_message and i in to_cache and cache_control_count < 4:
text_content["cache_control"] = {"type": "ephemeral"}
cache_control_count += 1
processed_content = [text_content]
processed_messages.append({
"role": message["role"],
"content": processed_content
})
payload = {
"model": body["model"][body["model"].find(".") + 1 :],
"messages": processed_messages,
"max_tokens": body.get("max_tokens", 4096),
"temperature": body.get("temperature", 0.8),
"top_k": body.get("top_k", 40),
"top_p": body.get("top_p", 0.9),
"stop_sequences": body.get("stop", []),
"system": processed_system,
"stream": body.get("stream", False),
}
headers = {
"x-api-key": self.valves.ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01",
"anthropic-beta": "prompt-caching-2024-07-31",
"content-type": "application/json",
}
url = "https://api.anthropic.com/v1/messages"
try:
if body.get("stream", False):
return self.stream_response(url, headers, payload)
else:
return self.non_stream_response(url, headers, payload)
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
return f"Error: Request failed: {e}"
except Exception as e:
print(f"Error in pipe method: {e}")
return f"Error: {e}"
def stream_response(self, url, headers, payload):
try:
with requests.post(
url, headers=headers, json=payload, stream=True, timeout=(3.05, 60)
) as response:
if response.status_code != 200:
raise Exception(
f"HTTP Error {response.status_code}: {response.text}"
)
for line in response.iter_lines():
if line:
line = line.decode("utf-8")
if line.startswith("data: "):
try:
data = json.loads(line[6:])
if data["type"] == "content_block_start":
yield data["content_block"]["text"]
elif data["type"] == "content_block_delta":
yield data["delta"]["text"]
elif data["type"] == "message_stop":
break
elif data["type"] == "message":
for content in data.get("content", []):
if content["type"] == "text":
yield content["text"]
# Delay to avoid overwhelming the client
time.sleep(0.01)
except json.JSONDecodeError:
print(f"Failed to parse JSON: {line}")
except KeyError as e:
print(f"Unexpected data structure: {e}")
print(f"Full data: {data}")
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
yield f"Error: Request failed: {e}"
except Exception as e:
print(f"General error in stream_response method: {e}")
yield f"Error: {e}"
def non_stream_response(self, url, headers, payload):
try:
response = requests.post(
url, headers=headers, json=payload, timeout=(3.05, 60)
)
if response.status_code != 200:
raise Exception(f"HTTP Error {response.status_code}: {response.text}")
res = response.json()
return (
res["content"][0]["text"] if "content" in res and res["content"] else ""
)
except requests.exceptions.RequestException as e:
print(f"Failed non-stream request: {e}")
return f"Error: {e}"
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment