Skip to content

Instantly share code, notes, and snippets.

@monsonite
Created September 21, 2015 21:34
Show Gist options
  • Save monsonite/e5f618a7b094585e1d59 to your computer and use it in GitHub Desktop.
Save monsonite/e5f618a7b094585e1d59 to your computer and use it in GitHub Desktop.
32bit math SIMPL Serial Interpreted Minimal Language - for Arduino &ct
// SIMPL
// A Serial Interpreted Minimal Programming Language
// Inspired by Txtzyme - by Ward Cunningham
// Filename simpl_2015_slim_11
// This is the slim version of simpl that removes most of the Arduino specific routines - saving almost 1800 bytes
// In Version 10: Added printlong() to print out a 32 bit integer plus some 32bit arithmetic and timing functions
// 32bit support pushes codesize up by about 1Kbytes - as all math routines now are 32 bit
// Some fixed "Musical Tones"
// 40{1o1106u0o1106u} // A 440 Hz
// 45{1o986u0o986u} // B 493.88 Hz
// 51{1o929u0o929u} // C 523.25 Hz
// 57{1o825u0o825u} // D 587.33 Hz
// 64{1o733u0o733u} // E 659.26 Hz
// 72{1o690u0o691u} // F 698.46 Hz
// 81{1o613u0o613u} // G 783.99 HZ
// This 32 bit SIMPL compiles in under 5090 bytes - leaving lots of room for other stuff
// The core kernel is only 2k bytes
// SIMPL allows new words to be defined by preceding them with colon : (Like Forth)
// New words use CAPITALS - so 26 words are possible in the user's vocabulary
// Words A-F have been predefined as musical tones - but you can write over them
// A word can be a maximum of 48 characters long
// Type ? to get a list off all defined words
#define F_CPU 16000000UL // define the clock frequency as 16MHz
#define BAUD 115200
#include <util/setbaud.h> // Set up the Uart baud rate generator
#define bufRead(addr) (*(unsigned char *)(addr))
#define bufWrite(addr, b) (*(unsigned char *)(addr) = (b))
// This character array is used to hold the User's words
char array[26][48] = { // Define a 26 x 48 array for the colon definitions
{"6d40{h1106ul1106u}"},
{"6d45{h986ul986u}"},
{"6d51{h929ul929u}"},
{"6d57{h825ul825u}"},
{"6d64{h733ul733u}"},
{"6d72{h690ul691u}"},
{"6d81{h613ul613u}"},
{"_Hello World, and welcome to SIMPL_"},
{"5{ABC}"},
{""},
{""},
{""},
{"_This is a test message - about 48 characters_"}
};
int a = 0; // integer variables a,b,c,d
int b = 0;
int c = 0;
int d = 6; // d is used to denote the digital port pin for I/O operations
// int d =13; // d is used to denote the digital port pin for I/O operations Pin 13 on Arduino
unsigned long x = 0; // Three gen purpose variables
unsigned long y = 0;
unsigned int z = 0;
unsigned char bite;
int len = 48; // the max length of a User word
long old_millis=0;
long new_millis=0;
long D_num = 0;
long D_val = 0;
long D_decade = 0;
char name;
char* parray;
char buf[64];
char* addr;
unsigned int num = 0;
unsigned int num_val = 0;
int j;
char num_buf[11]; // long enough to hold a 32 bit long
int decade = 0;
char digit = 0;
//void setup()
int main()
{
// -----------------------------------------------------------------------------------
// Setup the various arrary and initialisation routines
// This replaces setup()
// Enable UART
uart_init();
DDRD = DDRD | B11111100; // Sets pins 2 to 7 as outputs without changing the value of pins 0 & 1, which are RX & TX
parray = &array[0][0]; // parray is the pointer to the first element
// -----------------------------------------------------------------------------------
while(1) // This is the endless while loop which implements the interpreter
{
txtRead(buf, 64); // Get the next "instruction" character from the buffer
txtChk(buf); // check if it is a : character for beginning a colon definition
txtEval(buf); // evaluate and execute the instruction
}
} // End of main()
// ---------------------------------------------------------------------------------------------------------
// Functions
void txtRead (char *p, byte n)
{
byte i = 0;
while (i < (n-1)) {
// while (!Serial.available());
char ch = u_getchar(); // get the character from the buffer
if (ch == '\r' || ch == '\n') break;
if (ch >= ' ' && ch <= '~') {
*p++ = ch;
i++;
}
}
*p = 0;
}
// ---------------------------------------------------------------------------------------------------------
void txtChk (char *buf) // Check if the text starts with a colon and if so store in temp[]
{
if (*buf == ':') {
char ch;
int i =0;
while ((ch = *buf++)){
if (ch == ':') {
u_putchar(*buf); // get the name from the first character
u_putchar(10);
u_putchar(13);
name = *buf ;
buf++;
}
bufWrite((parray + (len*(name-65) +i)),*buf);
i++;
}
x = 1;
}
}
// ---------------------------------------------------------------------------------------------------------
void txtEval (char *buf) // Evaluate the instructiona and jump to the action toutine
{
unsigned long k = 0;
char *loop;
char *start;
char ch;
while ((ch = *buf++)) {
switch (ch) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
x = ch - '0';
while (*buf >= '0' && *buf <= '9') {
x = x*10 + (*buf++ - '0');
}
break;
case 'p':
printlong(x);
crlf();
break;
case 'q':
printlong(x);
crlf();
break;
/*
case 'a':
a = x;
break;
*/
case 'b':
printlong(millis());
break;
case 'c':
printlong(micros());
break;
case 'd':
d = x;
break;
//--------------------------------------------------------------------------
// I/O Group
case 'h':
PORTD |= B01000000; // Set bit 6 high
break;
case 'l':
PORTD &= B10111111; // Set bit 6 low
break;
//-------------------------------------------------------------------------------
// User Words
case 'A': // Point the interpreter to the array containing the words
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
case 'G':
case 'H':
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
case 'Q':
case 'R':
case 'S':
case 'T':
case 'U':
case 'V':
case 'W':
case 'X':
case 'Y':
case 'Z':
name = ch - 65;
addr = parray + (len*name);
txtEval(addr);
break;
//----------------------------------------------------------
// Memory Group
case '!': // store
y = x;
break;
case '@': // fetch
x = y;
break;
//----------------------------------------------------------
// Arithmetic Group
case '+':
x = x+y;
break;
case '-':
x = x-y;
break;
case '*':
x = x*y;
break;
case '/':
x = x/y;
break;
case '%':
x = x%y;
break;
case 'x':
x = x + 1;
break;
case 'y':
y = y + 1;
break;
//--------------------------------------------------------------------
// Logical Group - provides bitwise logical function between x and y
case '&':
x = x&y; // Logical AND
break;
case '|':
x = x|y; // Logical OR
break;
case '^':
x = x^y; // Logical XOR
break;
case '~':
x = !x; // Complement x
break;
//--------------------------------------------------------------------
// Comparison Test and conditional Group
case '<':
if(x<y){x=1;} // If x<y x= 1 - can be combined with jump j
else x=0;
break;
case '>':
if(x>y){x=1;} // If x>y x= 1 - can be combined with jump j
else x=0;
break;
case 'j': // test if x = 1 and jump next instruction
if(x==1){*buf++;}
break;
//----------------------------------------------------------------------------------
// Byte wide output
/*
case 'n': // Output an 8 bit value on I/O Dig 2 - Dig 9
// Can be extended to 12 bits on Dig 2 - Dig 13
if(x>=128){digitalWrite(9,HIGH); x = x- 128;} else {digitalWrite(9,LOW);}
if(x>=64){digitalWrite(8,HIGH); x = x- 64;} else {digitalWrite(8,LOW);}
if(x>=32){digitalWrite(7,HIGH); x = x- 32;} else {digitalWrite(7,LOW);}
if(x>=16){digitalWrite(6,HIGH); x = x- 16;} else {digitalWrite(6,LOW);}
if(x>=8){digitalWrite(5,HIGH); x = x- 8;} else {digitalWrite(5,LOW);}
if(x>=4){digitalWrite(4,HIGH); x = x- 4;} else {digitalWrite(4,LOW);}
if(x>=2){digitalWrite(3,HIGH); x = x- 2;} else {digitalWrite(3,LOW);}
if(x>=1){digitalWrite(2,HIGH); x = x- 1;} else {digitalWrite(2,LOW);}
break;
*/
//----------------------------------------------------------------------------------
// Print out the current word list
case '?': // Print out all the RAM
parray = &array[0][0]; // reset parray to the pointer to the first element
for (int j = 0; j<26; j++) {
u_putchar(j+65); // print the caps word name
u_putchar(32); // space
for (int i=0; i<len; i++) {
bite = bufRead( parray + (j *len )+i); // read the array
u_putchar(bite); // print the character to the serial port
}
crlf();
}
for(int i = 0; i <11; i++) // add some spaces to make it more legible on the page
{
crlf();
}
break;
//----------------------------------------------------------------------------------------------------
// Added 15-2-2015 - all appears to be working
case '(': // The start of a condition test
k = x;
start = buf; // remember the start position of the test
while ((ch = *buf++) && ch != ')') { // get the next character into ch and increment the buffer pointer *buf - evaluate the code
}
case ')':
if (x) { // if x is positive - go around again
buf = start;
}
break;
//--------------------------------------------------------------------------------------------------
case '.':
while ((ch = *buf++) && ch != '.') {
// Serial.print(ch);
name = ch - 65;
addr = parray + (len*name);
while ((ch = *addr++) && ch != '.') {
u_putchar(ch);
}
}
crlf();
break;
// txtEval(addr);
// break;
case ' ': // Transfer x into second variable y
k=y; // Transfer loop counter into k
y= x;
break;
case '$': // Load x with the ASCII value of the next character i.e. 5 = 35H or 53 decimal
x=*(buf-2);
break;
//-----------------------------------------------------------------------------------------------------------------------------------------------
// Analogue and Digital Input and Output Group
case 'a':
// analogWrite(d,x);
break;
case 's':
// x = analogRead(x);
break;
case 'i':
// x = digitalRead(d);
break;
case 'o':
// digitalWrite(d, x%2);
break;
//----------------------------------------------------------------------------------------------------------
// Timing and Delays Group
case 'm':
delay(x);
break;
case 'u':
delayMicroseconds(x);
break;
//----------------------------------------------------------------------------------------------------------
// Looping and program control group
case '{':
k = x;
loop = buf;
while ((ch = *buf++) && ch != '}') {
}
case '}':
if (k) {
k--;
buf = loop;
}
break;
case 'k':
x = k;
break;
case '_':
while ((ch = *buf++) && ch != '_') {
u_putchar(ch);
}
crlf();
break;
//--------------------------------------------------------------------------------------
case 't':
printlong(micros());
break;
case 'z': // z is a non-blocking pause or nap - measured in "zeconds" which allows UART characters,
old_millis = millis(); // get the millisecond count when you enter the switch-case
// while (!Serial.available()||millis()-old_millis<=(x*1000))
// { }
printstring("waiting for escape");
// Serial.println("Got a char");
ch = u_getchar();
printstring("Got a £");
// Put the idle loop and escape code here
if(ch=='£')
{
printstring("Escape");
break;
}
// interrupts or digital Inputs to break the pause
// Serial.println(millis());
// break;
}
}
}
//--------------------------------------------------------------------------------------
// UART Routines
//--------------------------------------------------------------------------------------
void uart_init(void)
{
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
#if USE_2X
UCSR0A |= _BV(U2X0);
#else
UCSR0A &= ~(_BV(U2X0));
#endif
UCSR0C = _BV(UCSZ01) | _BV(UCSZ00); /* 8-bit data */
UCSR0B = _BV(RXEN0) | _BV(TXEN0); /* Enable RX and TX */
}
void u_putchar(char c) {
loop_until_bit_is_set(UCSR0A, UDRE0); /* Wait until data register empty. */
UDR0 = c;
}
char u_getchar(void) {
loop_until_bit_is_set(UCSR0A, RXC0); /* Wait until data exists. */
return UDR0;
}
//-----------------------------------------------------------------------------------------
// Print a 16 bit int number
/*
void printnum(int num)
{
// num is likely going to be a 16 bit iunsigned int - so we are handling up to 5 digits
// We need to test which decade it is in - and convert the leading digit to ascii - remembering to suppress leading zeroes
num_val = num; // make a copy of num for later
// Extract the digits into the num_buff
decade = 10000;
for (j = 5; j>0; j--)
{
z = num/decade;
num_buf[j]=z+48;
num = num - (decade*z);
decade = decade/10;
}
// Now print out the array - correcting to allow for leading zero suppression
if (num_val == 0)
{
{num_buf[5] = 48;}
}
decade = 10000; // we need to know what decade we are in for leading zero suppression
j=5;
while(num_buf[j]!=0)
{
if(num_buf[j] == 48 && (num_val <= decade)) {j--;} // suppress leading zeroes
else
{
u_putchar(num_buf[j]); // send the number
num_buf[j]=0; // erase the array for next time
j--;
}
decade = decade/10; // update the decade
}
if(!num_val){u_putchar(48); } // separately handle the case when num == 0
}
*/
//----------------------------------------------------------------------------------------------------------
// Print a string
void printstring(char *buf)
{
}
//----------------------------------------------------------------------------------------------------------
// Print a CR-LF
void crlf(void) // send a crlf
{
u_putchar(10);
u_putchar(13);
}
//---------------------------------------------------------------------------------------------------------
// Print a 32 bit integer
void printlong(long D_num)
{
// num is likely going to be a 16 bit iunsigned int - so we are handling up to 5 digits
// We need to test which decade it is in - and convert the leading digit to ascii - remembering to suppress leading zeroes
D_val = D_num; // make a copy of num for later
// Extract the digits into the num_buff
D_decade = 1000000000;
for (j = 10; j>0; j--)
{
z = D_num/D_decade;
num_buf[j]=z+48;
D_num = D_num - (D_decade*z);
D_decade = D_decade/10;
}
// Now print out the array - correcting to allow for leading zero suppression
if (D_val == 0)
{
{num_buf[10] = 48;}
}
D_decade = 1000000000; // we need to know what decade we are in for leading zero suppression
j=10;
while(num_buf[j]!=0)
{
if(num_buf[j] == 48 && (D_val <= D_decade)) {j--;} // suppress leading zeroes
else
{
u_putchar(num_buf[j]); // send the number
num_buf[j]=0; // erase the array for next time
j--;
}
D_decade = D_decade/10; // update the decade
}
if(!D_val){u_putchar(48); } // separately handle the case when num == 0
// crlf();
u_putchar(10);
u_putchar(13);
}
//-----------------------------------------------------------------------------------------------------
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment