Created
January 12, 2013 07:23
-
-
Save moolex/4516551 to your computer and use it in GitHub Desktop.
Bellard的基于BBP公式的Pi计算程序
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Computation of the n'th decimal digit of \pi with very little memory. | |
* Written by Fabrice Bellard on January 8, 1997. | |
* | |
* We use a slightly modified version of the method described by Simon | |
* Plouffe in "On the Computation of the n'th decimal digit of various | |
* transcendental numbers" (November 1996). We have modified the algorithm | |
* to get a running time of O(n^2) instead of O(n^3log(n)^3). | |
* | |
* This program uses mostly integer arithmetic. It may be slow on some | |
* hardwares where integer multiplications and divisons must be done | |
* by software. We have supposed that 'int' has a size of 32 bits. If | |
* your compiler supports 'long long' integers of 64 bits, you may use | |
* the integer version of 'mul_mod' (see HAS_LONG_LONG). | |
*/ | |
#include <stdlib.h> | |
#include <stdio.h> | |
#include <math.h> | |
/* uncomment the following line to use 'long long' integers */ | |
/* #define HAS_LONG_LONG */ | |
#ifdef HAS_LONG_LONG | |
#define mul_mod(a,b,m) (( (long long) (a) * (long long) (b) ) % (m)) | |
#else | |
#define mul_mod(a,b,m) fmod( (double) a * (double) b, m) | |
#endif | |
/* return the inverse of x mod y */ | |
int inv_mod(int x,int y) { | |
int q,u,v,a,c,t; | |
u=x; | |
v=y; | |
c=1; | |
a=0; | |
do { | |
q=v/u; | |
t=c; | |
c=a-q*c; | |
a=t; | |
t=u; | |
u=v-q*u; | |
v=t; | |
} while (u!=0); | |
a=a%y; | |
if (a<0) a=y+a; | |
return a; | |
} | |
/* return (a^b) mod m */ | |
int pow_mod(int a,int b,int m) | |
{ | |
int r,aa; | |
r=1; | |
aa=a; | |
while (1) { | |
if (b&1) r=mul_mod(r,aa,m); | |
b=b>>1; | |
if (b == 0) break; | |
aa=mul_mod(aa,aa,m); | |
} | |
return r; | |
} | |
/* return true if n is prime */ | |
int is_prime(int n) | |
{ | |
int r,i; | |
if ((n % 2) == 0) return 0; | |
r=(int)(sqrt(n)); | |
for(i=3;i<=r;i+=2) if ((n % i) == 0) return 0; | |
return 1; | |
} | |
/* return the prime number immediatly after n */ | |
int next_prime(int n) | |
{ | |
do { | |
n++; | |
} while (!is_prime(n)); | |
return n; | |
} | |
int main(int argc,char *argv[]) | |
{ | |
int av,a,vmax,N,n,num,den,k,kq,kq2,t,v,s,i; | |
double sum; | |
if (argc<2 || (n=atoi(argv[1])) <= 0) { | |
printf("This program computes the n'th decimal digit of \\pi\n" | |
"usage: pi n , where n is the digit you want\n" | |
); | |
exit(1); | |
} | |
N=(int)((n+20)*log(10)/log(2)); | |
sum=0; | |
for(a=3;a<=(2*N);a=next_prime(a)) { | |
vmax=(int)(log(2*N)/log(a)); | |
av=1; | |
for(i=0;i<vmax;i++) av=av*a; | |
s=0; | |
num=1; | |
den=1; | |
v=0; | |
kq=1; | |
kq2=1; | |
for(k=1;k<=N;k++) { | |
t=k; | |
if (kq >= a) { | |
do { | |
t=t/a; | |
v--; | |
} while ((t % a) == 0); | |
kq=0; | |
} | |
kq++; | |
num=mul_mod(num,t,av); | |
t=(2*k-1); | |
if (kq2 >= a) { | |
if (kq2 == a) { | |
do { | |
t=t/a; | |
v++; | |
} while ((t % a) == 0); | |
} | |
kq2-=a; | |
} | |
den=mul_mod(den,t,av); | |
kq2+=2; | |
if (v > 0) { | |
t=inv_mod(den,av); | |
t=mul_mod(t,num,av); | |
t=mul_mod(t,k,av); | |
for(i=v;i<vmax;i++) t=mul_mod(t,a,av); | |
s+=t; | |
if (s>=av) s-=av; | |
} | |
} | |
t=pow_mod(10,n-1,av); | |
s=mul_mod(s,t,av); | |
sum=fmod(sum+(double) s/ (double) av,1.0); | |
} | |
printf("Decimal digits of pi at position %d: %09d\n",n,(int)(sum*1e9)); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment