Last active
December 11, 2015 00:28
-
-
Save moolex/4516587 to your computer and use it in GitHub Desktop.
Bellard的基于BBP公式的Pi计算程序(PHP版)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?php | |
/** | |
* 圆周率计算(BBP) | |
* @author Moyo <[email protected]> | |
* @url http://moyo.uuland.org/code/php-pi-calc/ | |
* @version 1.0 | |
* @date 2013.01.12 | |
*/ | |
class pi | |
{ | |
public static function calc($__N__) | |
{ | |
$n = (int)$__N__; | |
$av = $a = $vmax = $N = $num = $den = $k = $kq = $kq2 = $t = $v = $s = $i = 0; | |
$sum = 0.0; | |
$N = (int)(($n + 20) * log(10) / log(2)); | |
$sum = 0; | |
for ($a = 3; $a <= (2 * $N); $a = self::next_prime($a)) | |
{ | |
$vmax = (int)(log(2 * $N) / log($a)); | |
$av = 1; | |
for ($i = 0; $i < $vmax; $i ++) | |
{ | |
$av = ($av * $a); | |
} | |
$s = 0; | |
$num = 1; | |
$den = 1; | |
$v = 0; | |
$kq = 1; | |
$kq2 = 1; | |
for ($k = 1; $k <= $N; $k ++) | |
{ | |
$t = $k; | |
if ($kq >= $a) | |
{ | |
do | |
{ | |
$t = (int)($t / $a); | |
$v --; | |
} | |
while (($t % $a) == 0); | |
$kq = 0; | |
} | |
$kq ++; | |
$num = self::mul_mod($num, $t, $av); | |
$t = (2 * $k -1); | |
if ($kq2 >= $a) | |
{ | |
if ($kq2 == $a) | |
{ | |
do | |
{ | |
$t = (int)($t / $a); | |
$v ++; | |
} | |
while (($t % $a) == 0); | |
} | |
$kq2 -= $a; | |
} | |
$den = self::mul_mod($den, $t, $av); | |
$kq2 += 2; | |
if ($v > 0) | |
{ | |
$t = self::inv_mod($den, $av); | |
$t = self::mul_mod($t, $num, $av); | |
$t = self::mul_mod($t, $k, $av); | |
for ($i = $v; $i < $vmax; $i ++) | |
{ | |
$t = self::mul_mod($t, $a, $av); | |
} | |
$s += $t; | |
if ($s >= $av) | |
{ | |
$s -= $av; | |
} | |
} | |
} | |
$t = self::pow_mod(10, ($n - 1), $av); | |
$s = self::mul_mod($s, $t, $av); | |
$sum = (double)fmod((double)$sum + (double)$s / (double)$av, 1.0); | |
} | |
return array( | |
'n' => $n, | |
'v' => sprintf('%09d', (int)($sum * 1e9)) | |
); | |
} | |
private static function next_prime($n) | |
{ | |
do | |
{ | |
$n ++; | |
} | |
while (!self::is_prime($n)); | |
return $n; | |
} | |
private static function is_prime($n) | |
{ | |
$r = $i = 0; | |
if (($n % 2) == 0) | |
{ | |
return 0; | |
} | |
$r = (int)(sqrt($n)); | |
for ($i = 3; $i <= $r; $i += 2) | |
{ | |
if (($n % $i) == 0) | |
{ | |
return 0; | |
} | |
} | |
return 1; | |
} | |
private static function mul_mod($a, $b, $m) | |
{ | |
return fmod((double)$a * (double)$b, $m); | |
} | |
private static function inv_mod($x, $y) | |
{ | |
$q = $u = $v = $a = $c = $t = 0; | |
$u = $x; | |
$v = $y; | |
$c = 1; | |
$a = 0; | |
do | |
{ | |
$q = (int)($v / $u); | |
$t = $c; | |
$c = $a - $q * $c; | |
$a = $t; | |
$t = $u; | |
$u = $v - $q * $u; | |
$v = $t; | |
} | |
while ($u != 0); | |
$a = $a % $y; | |
if ($a < 0) | |
{ | |
$a = $y + $a; | |
} | |
return $a; | |
} | |
private static function pow_mod($a, $b, $m) | |
{ | |
$r = $aa = 0; | |
$r = 1; | |
$aa = $a; | |
while (1) | |
{ | |
if ($b & 1) | |
{ | |
$r = self::mul_mod($r, $aa, $m); | |
} | |
$b = $b >> 1; | |
if ($b == 0) | |
{ | |
break; | |
} | |
$aa = self::mul_mod($aa, $aa, $m); | |
} | |
return $r; | |
} | |
} | |
?> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment