Created
October 19, 2015 05:45
-
-
Save moonwatcher/349cd2fc9749eefa99eb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# content of main.R | |
source("CSI.R") | |
#Cenix | |
data <- read.delim("../../Cenix_Digimap_raw_040820.csv", header = TRUE, row.names = 1, sep = "\t") | |
input_m <- data[,2:46] | |
phenoSig <- as.matrix(input_m) | |
phenoSig[ which(phenoSig <=1) ] = 0 | |
phenoSig[ which(phenoSig >1) ] = 1 | |
names <- row.names(phenoSig) | |
for (i in 1:length(names)){ | |
if ( substr(names[i], nchar(names[i]), nchar(names[i]) ) == "a" || substr(names[i], nchar(names[i]), nchar(names[i]) ) == "b" ){ | |
names[i] <- substr(names[i], 1, nchar(names[i])-1) | |
} | |
} | |
row.names(phenoSig) <- names | |
sumPhenoSig <- rowSums(phenoSig) | |
filteredPhenoSig <- phenoSig[sumPhenoSig>0,] | |
tphenoSig <- t(filteredPhenoSig) | |
PCC <- cor(tphenoSig, method="pearson") | |
pccCSI <- CSI(PCC, 0.05) | |
if (exists ("result") ){ | |
rm(result) | |
} | |
for (i in 1:(nrow(pccCSI)-1) ){ | |
for (j in (i+1):nrow(pccCSI) ){ | |
if (!exists ("result") ){ | |
result <- c(row.names(filteredPhenoSig)[i], row.names(filteredPhenoSig)[j], pccCSI[i,j] ) | |
}else{ | |
result <- rbind(result, c(row.names(filteredPhenoSig)[i], row.names(filteredPhenoSig)[j], pccCSI[i,j] ) ) | |
} | |
} | |
} | |
write.table(result, file="../results/Cenix_2_CSI.txt", sep="\t", row.names = FALSE, quote =FALSE, col.names=FALSE) | |
#Gonad | |
phenoSig <- read.table("../../Greenetal_geneBinary2.txt", sep="\t", header=T, row.names=1) | |
phenoSig <- as.matrix(phenoSig) | |
sumPhenoSig <- rowSums(phenoSig) | |
filteredPhenoSig <- phenoSig[sumPhenoSig>0,] | |
tphenoSig <- t(filteredPhenoSig) | |
PCC <- cor(tphenoSig, method="pearson") | |
pccCSI <- CSI(PCC, 0.05) | |
if (exists ("result") ){ | |
rm(result) | |
} | |
for (i in 1:(nrow(pccCSI)-1) ){ | |
for (j in (i+1):nrow(pccCSI) ){ | |
if (!exists ("result") ){ | |
result <- c(row.names(filteredPhenoSig)[i], row.names(filteredPhenoSig)[j], pccCSI[i,j] ) | |
}else{ | |
result <- rbind(result, c(row.names(filteredPhenoSig)[i], row.names(filteredPhenoSig)[j], pccCSI[i,j] ) ) | |
} | |
} | |
} | |
write.table(result, file="../results/gonad.txt", sep="\t", row.names = FALSE, quote =FALSE, col.names=FALSE) | |
# content of CSI.R | |
CSI <- function(input_m, offset){ | |
#PCC (input_m) + network filter | |
#offset = 0.05 in the Green et al. paper | |
geneNum <- length(input_m[,1]) | |
out_m <- matrix(data = 0, ncol=geneNum, nrow = geneNum, dimnames = list(row.names(input_m),colnames(input_m))) | |
#transfer to CSI | |
for (i in 1:geneNum){ | |
for (j in i:geneNum){ | |
cUvalueMinusCutOff = input_m[i,j] - offset | |
x <- which(input_m[i,] >= cUvalueMinusCutOff ) | |
y <- which(input_m[j,] >= cUvalueMinusCutOff ) | |
z <- unique(c(x,y)) | |
####This calculation remove i,j. This will make the maximum of CSI = 1 | |
#out_m[i,j] <- 1- ( (length(z)-2) / geneNum) #calculate specificity | |
####This calculation do not remove i,j. Therefore, the maximum CSI will equals to 1-(2/geneNum). According to the paper figure, 1 - (# Genes Connected to A or B with PCC ≥ PCCAB- offset / Total # Genes in Screen). Therefore, I made this as the official version in the calculation. | |
out_m[i,j] <- 1- (length(z) / geneNum) #calculate specificity | |
out_m[j,i] <- out_m[i,j] | |
} | |
} | |
return (out_m) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment