Last active
September 20, 2018 00:46
-
-
Save moorage/0e936076912e2393bca80d06b9fc6299 to your computer and use it in GitHub Desktop.
pyrealsense2 implementation for saving numpy arrays for aligned depth
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# On macOS, you'll need to build the wrapper and export PYTHONPATH=$PYTHONPATH:/____PATH_TO____/librealsense/build/wrappers/python/Debug | |
import pyrealsense2 as rs | |
import numpy as np | |
# Give time for auto-exposure to kick in | |
CAPTURES_BEFORE_SAVING = 10 | |
# Create a context object. This object owns the handles to all connected realsense devices | |
rs_pipeline = rs.pipeline() | |
#Create a config and configure the pipeline to stream | |
rs_config = rs.config() | |
rs_config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30) | |
rs_config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30) | |
rs_profile = rs_pipeline.start(rs_config) | |
rs_depth_sensor = rs_profile.get_device().first_depth_sensor() | |
rs_depth_scale = rs_depth_sensor.get_depth_scale() | |
print("Depth Scale is: " , rs_depth_scale) | |
align_to = rs.stream.color | |
align = rs.align(align_to) | |
np_depth_data = None | |
np_color_data = None | |
images_captured = 0 | |
while True: | |
# Create a pipeline object. This object configures the streaming camera and owns it's handle | |
frames = rs_pipeline.wait_for_frames() | |
aligned_frames = align.process(frames) | |
aligned_depth_frame = aligned_frames.get_depth_frame() # aligned_depth_frame is a 640x480 depth image | |
color_frame = aligned_frames.get_color_frame() | |
if not aligned_depth_frame or not color_frame: # doesn't count as a capture | |
continue | |
elif images_captured < CAPTURES_BEFORE_SAVING: | |
images_captured = images_captured + 1 | |
else: | |
raw_depth_data = np.asanyarray(aligned_depth_frame.get_data()) | |
np_depth_data = (raw_depth_data * rs_depth_scale).astype(np.float32) | |
np_color_data = np.asanyarray(color_frame.get_data()) | |
break | |
rs_pipeline.stop() | |
print("Image captured. Saving.") | |
print("np_depth_data.shape =", np_depth_data.shape, | |
"; np_depth_data.dtype =", np_depth_data.dtype, | |
"; avg(np_depth_data) =", np.average(np_depth_data), | |
"; median(np_depth_data) =", np.median(np_depth_data), | |
# "; mode(np_depth_data) =", np.mode(np_depth_data), | |
"; range(np_depth_data) =", np.amin(np_depth_data), "-", np.amax(np_depth_data) | |
) | |
print("np_color_data.shape =", np_color_data.shape, | |
"; np_color_data.dtype =", np_color_data.dtype, | |
"; avg(np_color_data) =", np.average(np_color_data), | |
"; median(np_color_data) =", np.median(np_color_data), | |
# "; mode(np_color_data) =", np.mode(np_color_data), | |
"; range(np_color_data) =", np.amin(np_color_data), "-", np.amax(np_color_data) | |
) | |
np.save('np_depth_data.npy', np_depth_data) | |
np.save('np_color_data.npy', np_color_data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
To load the image, use: