Created
April 4, 2024 11:47
-
-
Save morrisalp/0bac8596c46ff83d0365325ed0ecdb86 to your computer and use it in GitHub Desktop.
example of prompt mixing (different prompts at different denoising steps) with SD2.1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from diffusers import StableDiffusionPipeline | |
from matplotlib import pyplot as plt | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16) | |
pipe = pipe.to(device) | |
prompts = ["a hamburger"] * 8 + ["a birthday cake"] * 12 | |
def cb(self, step, timestep, callback_kwargs): | |
if step >= len(prompts) - 1: | |
return {} | |
prompt = prompts[step + 1] | |
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt, device, 1, self.do_classifier_free_guidance) | |
return {"prompt_embeds": torch.cat([negative_prompt_embeds, prompt_embeds])} | |
out = pipe( | |
prompts[0], | |
num_inference_steps=len(prompts), | |
generator=torch.manual_seed(0), | |
num_images_per_prompt=1, | |
callback_on_step_end=cb | |
) | |
plt.imshow(out.images[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment