Last active
November 26, 2019 00:30
-
-
Save mortonjt/227a0058194c2fa0ecf06807e1315d35 to your computer and use it in GitHub Desktop.
This performs a very simple negative binomial regression tailored for differential abundance analysis
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int<lower=0> N; // number of samples | |
int<lower=0> D; // number of dimensions | |
int<lower=0> p; // number of covariates | |
real depth[N]; // sequencing depths of microbes | |
matrix[N, p] x; // covariate matrix | |
int y[N, D]; // observed microbe abundances | |
} | |
parameters { | |
// parameters required for linear regression on the species means | |
matrix[p, D-1] beta; | |
real reciprocal_phi; | |
} | |
transformed parameters { | |
matrix[N, D-1] lam; | |
matrix[N, D] lam_clr; | |
matrix[N, D] prob; | |
vector[N] z; | |
real phi; | |
phi = 1. / reciprocal_phi; | |
z = to_vector(rep_array(0, N)); | |
lam = x * beta; | |
lam_clr = append_col(z, lam); | |
} | |
model { | |
// setting priors ... | |
reciprocal_phi ~ cauchy(0., 5.); | |
for (i in 1:D-1){ | |
for (j in 1:p){ | |
beta[j, i] ~ normal(0., 5.); // uninformed prior | |
} | |
} | |
// generating counts | |
for (n in 1:N){ | |
for (i in 1:D){ | |
target += neg_binomial_2_log_lpmf(y[n, i] | depth[n] + lam_clr[n, i], phi); | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment