Skip to content

Instantly share code, notes, and snippets.

@mouseos
Last active December 27, 2022 08:42
Show Gist options
  • Save mouseos/a9b411944f20f2ae87f7bef510463de0 to your computer and use it in GitHub Desktop.
Save mouseos/a9b411944f20f2ae87f7bef510463de0 to your computer and use it in GitHub Desktop.
Source code for icpc demo.
import face_recognition
import cv2
import numpy as np
import glob
import re
import ctypes
import collections
#enable color for windows
ENABLE_PROCESSED_OUTPUT = 0x0001
ENABLE_WRAP_AT_EOL_OUTPUT = 0x0002
ENABLE_VIRTUAL_TERMINAL_PROCESSING = 0x0004
MODE = ENABLE_PROCESSED_OUTPUT + ENABLE_WRAP_AT_EOL_OUTPUT + ENABLE_VIRTUAL_TERMINAL_PROCESSING
kernel32 = ctypes.windll.kernel32
handle = kernel32.GetStdHandle(-11)
kernel32.SetConsoleMode(handle, MODE)
def extract_file_name(path):
#Delete all except file name
#For windows
name=(re.sub(r".*\\","",path))
#For unix
name=(re.sub(r".*/","",name))
#Delete extension
name=(re.sub(r"\..*","",name))
return(name)
print(extract_file_name("path/to/file.png"))
video_capture = cv2.VideoCapture(0)
#Define the path included faces
face_path="./faces"
face_mask_path=face_path+"/trained/with_mask/*"
face_no_mask_path=face_path+"/trained/without_mask/*"
#Collecting each files.
mask_files = glob.glob(face_mask_path)
no_mask_files = glob.glob(face_no_mask_path)
known_face_encodings=[]
known_face_names=[]
#load without mask image
for no_mask_file in no_mask_files:
print("Loading "+no_mask_file)
std_id=extract_file_name(no_mask_file)
try:
#load face image(without mask)
known_face_encodings.append(np.load(face_path+"/trained/without_mask/"+std_id+'.npy'))
known_face_names.append(std_id+"(without mask)")
except:
print('\033[31m'+"Can't detect face.Please load another one.")
#reset default color
print('\033[39m')
print(known_face_names)
#load with mask image
for mask_file in mask_files:
print("Loading "+mask_file)
std_id=extract_file_name(mask_file)
try:
#load face image(without mask)
known_face_encodings.append(np.load(face_path+"/trained/with_mask/"+std_id+'.npy'))
known_face_names.append(std_id+"(with mask)")
except:
print('\033[31m'+"Can't detect face.Please load another one.")
#reset default color
print('\033[39m')
print(known_face_names)
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
detected_names=[]
scan_cnt=0
send_frames=10;
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Only process every other frame of video to save time
if process_this_frame:
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
#Get name
detected_names.append(name)
scan_cnt+=1
if(scan_cnt==send_frames):
scan_cnt=0
detected_names_order=collections.Counter(detected_names)
print(detected_names_order.most_common())
detected_names=[]
# Display the resulting image
cv2.namedWindow("Video", cv2.WINDOW_KEEPRATIO)#not working aspect ratio is incorrect
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment