Last active
December 27, 2022 08:42
-
-
Save mouseos/a9b411944f20f2ae87f7bef510463de0 to your computer and use it in GitHub Desktop.
Source code for icpc demo.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import face_recognition | |
import cv2 | |
import numpy as np | |
import glob | |
import re | |
import ctypes | |
import collections | |
#enable color for windows | |
ENABLE_PROCESSED_OUTPUT = 0x0001 | |
ENABLE_WRAP_AT_EOL_OUTPUT = 0x0002 | |
ENABLE_VIRTUAL_TERMINAL_PROCESSING = 0x0004 | |
MODE = ENABLE_PROCESSED_OUTPUT + ENABLE_WRAP_AT_EOL_OUTPUT + ENABLE_VIRTUAL_TERMINAL_PROCESSING | |
kernel32 = ctypes.windll.kernel32 | |
handle = kernel32.GetStdHandle(-11) | |
kernel32.SetConsoleMode(handle, MODE) | |
def extract_file_name(path): | |
#Delete all except file name | |
#For windows | |
name=(re.sub(r".*\\","",path)) | |
#For unix | |
name=(re.sub(r".*/","",name)) | |
#Delete extension | |
name=(re.sub(r"\..*","",name)) | |
return(name) | |
print(extract_file_name("path/to/file.png")) | |
video_capture = cv2.VideoCapture(0) | |
#Define the path included faces | |
face_path="./faces" | |
face_mask_path=face_path+"/trained/with_mask/*" | |
face_no_mask_path=face_path+"/trained/without_mask/*" | |
#Collecting each files. | |
mask_files = glob.glob(face_mask_path) | |
no_mask_files = glob.glob(face_no_mask_path) | |
known_face_encodings=[] | |
known_face_names=[] | |
#load without mask image | |
for no_mask_file in no_mask_files: | |
print("Loading "+no_mask_file) | |
std_id=extract_file_name(no_mask_file) | |
try: | |
#load face image(without mask) | |
known_face_encodings.append(np.load(face_path+"/trained/without_mask/"+std_id+'.npy')) | |
known_face_names.append(std_id+"(without mask)") | |
except: | |
print('\033[31m'+"Can't detect face.Please load another one.") | |
#reset default color | |
print('\033[39m') | |
print(known_face_names) | |
#load with mask image | |
for mask_file in mask_files: | |
print("Loading "+mask_file) | |
std_id=extract_file_name(mask_file) | |
try: | |
#load face image(without mask) | |
known_face_encodings.append(np.load(face_path+"/trained/with_mask/"+std_id+'.npy')) | |
known_face_names.append(std_id+"(with mask)") | |
except: | |
print('\033[31m'+"Can't detect face.Please load another one.") | |
#reset default color | |
print('\033[39m') | |
print(known_face_names) | |
# Initialize some variables | |
face_locations = [] | |
face_encodings = [] | |
face_names = [] | |
process_this_frame = True | |
detected_names=[] | |
scan_cnt=0 | |
send_frames=10; | |
while True: | |
# Grab a single frame of video | |
ret, frame = video_capture.read() | |
# Only process every other frame of video to save time | |
if process_this_frame: | |
# Resize frame of video to 1/4 size for faster face recognition processing | |
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) | |
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) | |
rgb_small_frame = small_frame[:, :, ::-1] | |
# Find all the faces and face encodings in the current frame of video | |
face_locations = face_recognition.face_locations(rgb_small_frame) | |
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) | |
face_names = [] | |
for face_encoding in face_encodings: | |
# See if the face is a match for the known face(s) | |
matches = face_recognition.compare_faces(known_face_encodings, face_encoding) | |
name = "Unknown" | |
# # If a match was found in known_face_encodings, just use the first one. | |
# if True in matches: | |
# first_match_index = matches.index(True) | |
# name = known_face_names[first_match_index] | |
# Or instead, use the known face with the smallest distance to the new face | |
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) | |
best_match_index = np.argmin(face_distances) | |
if matches[best_match_index]: | |
name = known_face_names[best_match_index] | |
face_names.append(name) | |
process_this_frame = not process_this_frame | |
# Display the results | |
for (top, right, bottom, left), name in zip(face_locations, face_names): | |
# Scale back up face locations since the frame we detected in was scaled to 1/4 size | |
top *= 4 | |
right *= 4 | |
bottom *= 4 | |
left *= 4 | |
# Draw a box around the face | |
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) | |
# Draw a label with a name below the face | |
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) | |
font = cv2.FONT_HERSHEY_DUPLEX | |
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) | |
#Get name | |
detected_names.append(name) | |
scan_cnt+=1 | |
if(scan_cnt==send_frames): | |
scan_cnt=0 | |
detected_names_order=collections.Counter(detected_names) | |
print(detected_names_order.most_common()) | |
detected_names=[] | |
# Display the resulting image | |
cv2.namedWindow("Video", cv2.WINDOW_KEEPRATIO)#not working aspect ratio is incorrect | |
cv2.imshow('Video', frame) | |
# Hit 'q' on the keyboard to quit! | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
# Release handle to the webcam | |
video_capture.release() | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment